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• Course materials available at
https://doserjef.github.io/CASANR23-Spatial-Modeling/

https://doserjef.github.io/CASANR23-Spatial-Modeling/


What is spatial data?

• Any data with some geographical information (i.e., spatially
indexed)

• Common sources of spatial data: agricultural, climatology,
forestry, ecology, environmental health, disease epidemiology,
product marketing, etc.

• have many important predictors and response variables
• are often presented as maps

• Other examples where spatial need not refer to space on
earth:

• Genetics (position along a chromosome)
• Neuroimaging (data for each voxel in the brain)
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Point-referenced spatial data

• Each observation is associated with a location (point)
• Data represents a sample from a continuous spatial domain
• Also referred to as geocoded or geostatistical data
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Figure: Pollutant levels in Europe in March, 2009
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Point level modeling

• Point-level modeling refers to modeling of point-referenced
data collected at locations referenced by coordinates (e.g.,
lat-long, Easting-Northing).

• Data from a spatial process {Y (s) : s ∈ D}, D is a subset in
Euclidean space.

• Example: Y (s) is a pollutant level at site s
• Conceptually: Pollutant level exists at all possible sites
• Practically: Data will be a partial realization of a spatial

process – observed at {s1, . . . , sn}
• Statistical objectives: Inference about the process Y (s);

predict at new locations.
• Remarkable: Can learn about entire Y (s) surface. The key:

Structured dependence
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Exploratory data analysis (EDA): Plotting the data

• A typical setup: Data observed at n locations {s1, . . . , sn}
• At each si we observe the response y(si) and a p × 1 vector of

covariates x(si)
• Surface plots of the data often helps to understand spatial

patterns

y(s) x(s)
Figure: Response and covariate surface plots for Dataset 1
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What’s so special about spatial?

• Linear regression model: y(si) = x(si)⊤β + ϵ(si)
• ϵ(si) are iid N(0, τ2) errors
• y = (y(s1), . . . , y(sn))⊤; X = (x(s1)⊤, . . . , x(sn)⊤)⊤

• Inference: β̂ = (X⊤X)−1X⊤y ∼ N(β, τ2(X⊤X)−1)
• Prediction at new location s0: ŷ(s0) = x(s0)⊤β̂

• Although the data is spatial, this is an ordinary linear
regression model
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Residual plots

• Surface plots of the residuals (y(s) − ŷ(s)) help to identify
any spatial patterns left unexplained by the covariates

Figure: Residual plot for Dataset 1 after linear regression on x(s)

• No evident spatial pattern in plot of the residuals
• The covariate x(s) seem to explain all spatial variation in y(s)
• Does a non-spatial regression model always suffice?
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Western Experimental Forestry (WEF) data

• Data consist of a census of all trees in a 10 ha. stand in
Oregon

• Response of interest: Diameter at breast height (DBH)
• Covariate: Tree species (Categorical variable)

DBH Species Residuals

• Local spatial patterns in the residual plot
• Simple regression on species seems to be not sufficient
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More EDA

• Besides eyeballing residual surfaces, how to do more formal
EDA to identify spatial pattern?

First law of geography
“Everything is related to everything else, but near things are
more related than distant things.” – Waldo Tobler

• In general (Y (s + h) − Y (s))2 roughly increasing with ||h||
will imply a spatial correlation

• Can this be formalized to identify spatial pattern?
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Empirical semivariogram

• Binning: Make intervals I1 = (0, m1), I2 = (m1, m2), and so
forth, up to IK = (mK−1, mK ). Representing each interval by
its midpoint tk , we define:

N(tk) = {(si , sj) : ∥si − sj∥ ∈ Ik}, k = 1, . . . , K .

• Empirical semivariogram:

γ(tk) = 1
2|N(tk)|

∑
si ,sj ∈N(tk)

(Y (si) − Y (sj))2

• For spatial data, the γ(tk) is expected to roughly increase
with tk

• A flat semivariogram would suggest little spatial variation
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Empirical variogram: Data 1

y residuals

• Residuals display little spatial variation
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Empirical variograms: WEF data

• Regression model: DBH ∼ Species

DBH Residuals

• Variogram of the residuals confirm unexplained spatial
variation
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Modeling with the locations

• When purely covariate based models does not suffice, one
needs to leverage the information from locations

• General model using the locations:
y(s) = x(s)⊤β + w(s) + ϵ(s) for all s ∈ D

• How to choose the function w(·)?

• Since we want to predict at any location over the entire
domain D , this choice will amount to choosing a surface w(s)

• How should such a surface be chosen?
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Gaussian Processes (GPs)

• One popular approach to model w(s) is via Gaussian
Processes (GP)

• The collection of random variables {w(s) | s ∈ D} is a GP if
• it is a valid stochastic process
• all finite dimensional densities {w(s1), . . . , w(sn)} follow

multivariate Gaussian distribution

• A GP is completely characterized by a mean function m(s)
and a covariance function C(·, ·)

• Advantage: Likelihood based inference.
w = (w(s1), . . . , w(sn))⊤ ∼ N(m, C) where
m = (m(s1), . . . , m(sn))⊤ and C = C(si , sj)
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Valid covariance functions and isotropy

• C(·, ·) needs to be valid. For any/all {s1, s2, . . . , sn}, the
resulting covariance matrix C(si , sj) for
(w(s1), w(s2), . . . , w(sn)) must be positive definite

• So, C(·, ·) needs to be a positive definite function
• Simplifying assumptions:

• Stationarity: C(s1, s2) only depends on h = s1 − s2 (and is
denoted by C(h))

• Isotropic: C(h) = C(||h||)
• Anisotropic: Stationary but not isotropic

• Isotropic models are popular because of their simplicity,
interpretability, and because a number of relatively simple
parametric forms are available as candidates for C .
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Some common isotropic covariance functions

Model Covariance function, C(t) = C(||h||)

Spherical C(t) =


0 if t ≥ 1/ϕ

σ2
[
1 − 3

2ϕt + 1
2(ϕt)3

]
if 0 < t ≤ 1/ϕ

τ2 + σ2 otherwise

Exponential C(t) =
{

σ2 exp(−ϕt) if t > 0
τ2 + σ2 otherwise

Powered
exponential

C(t) =
{

σ2 exp(−|ϕt|p) if t > 0
τ2 + σ2 otherwise

Matérn
at ν = 3/2

C(t) =
{

σ2 (1 + ϕt) exp(−ϕt) if t > 0
τ2 + σ2 otherwise
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Notes on exponential model

C(t) =
{

τ2 + σ2 if t = 0
σ2 exp(−ϕt) if t > 0

.

• We define the effective range, t0, as the distance at which this
correlation has dropped to only 0.05. Setting exp(−ϕt0) equal
to this value we obtain t0 ≈ 3/ϕ, since log(0.05) ≈ −3.

• The nugget τ2 is often viewed as a “nonspatial effect
variance,”

• The partial sill (σ2) is viewed as a “spatial effect variance.”
• σ2 + τ2 gives the maximum total variance often referred to as

the sill
• Note discontinuity at 0 due to the nugget. Intentional! To

account for measurement error or micro-scale variability.
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Covariance functions and semivariograms

• Recall: Empirical semivariogram:
γ(tk) = 1

2|N(tk)|
∑

si ,sj ∈N(tk)(Y (si) − Y (sj))2

• For any stationary GP,
E (Y (s + h) − Y (s))2/2 = C(0) − C(h) = γ(h)

• γ(h) is the semivariogram corresponding to the covariance
function C(h)

• Example: For exponential GP,

γ(t) =
{

τ2 + σ2(1 − exp(−ϕt)) if t > 0
0 if t = 0

, where t = ||h||
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Covariance functions and semivariograms
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Covariance functions and semivariograms
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The Matèrn covariance function

• The Matèrn is a very versatile family:

C(t) =
{

σ2

2ν−1Γ(ν)(2√
νtϕ)νKν(2

√
(ν)tϕ) if t > 0

τ2 + σ2 if t = 0

Kν is the modified Bessel function of order ν (computationally
tractable)

• ν is a smoothness parameter controlling process smoothness.
Remarkable!

• ν = 1/2 gives the exponential covariance function

20



Kriging: Spatial prediction at new locations

• Goal: Given observations w = (w(s1), w(s2), . . . , w(sn))⊤,
predict w(s0) for a new location s0

• If w(s) is modeled as a GP, then (w(s0), w(s1), . . . , w(sn))⊤

jointly follow multivariate normal distribution

• w(s0) | w follows a normal distribution with
• Mean (kriging estimator): m(s0) + c⊤C−1(w − m), where

m = E (w), C = Cov(w), c = Cov(w, w(s0))
• Variance: C(s0, s0) − c⊤C−1c

• The GP formulation gives the full predictive distribution of
w(s0)|w

21



Modeling with GPs

Spatial linear model

y(s) = x(s)⊤β + w(s) + ϵ(s)

• w(s) modeled as GP(0, C(· | θ)) (usually without a nugget)

• ϵ(s) iid∼ N(0, τ2) contributes to the nugget

• Under isotropy: C(s + h, s) = σ2R(||h|| ; ϕ)

• w = (w(s1), . . . , w(sn))⊤ ∼ N(0, σ2R(ϕ)) where
R(ϕ) = σ2(R(||si − sj || ; ϕ))

• y = (y(s1), . . . , y(sn))⊤ ∼ N(Xβ, σ2R(ϕ) + τ2I)
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Parameter estimation

• y = (y(s1), . . . , y(sn))⊤ ∼ N(Xβ, σ2R(ϕ) + τ2I)

• We can obtain MLEs of parameters β, τ2, σ2, ϕ based on the
above model and use the estimates to krige at new locations

• In practice, the likelihood is often very flat with respect to the
spatial covariance parameters and choice of initial values is
important

• Initial values can be eyeballed from empirical semivariogram of
the residuals from ordinary linear regression
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Model comparison

• For k total parameters and sample size n:
• AIC: 2k − 2 log(l(y | β̂, θ̂, τ̂ 2))
• BIC: log(n)k − 2 log(l(y | β̂, θ̂, τ̂ 2))

• Prediction based approaches using holdout data:
• Root Mean Square Predictive Error (RMSPE):√

1
nout

∑nout
i=1(yi − ŷi)2

• Coverage probability (CP): 1
nout

∑nout
i=1 I(yi ∈ (ŷi,0.025, ŷi,0.975))

• Width of 95% confidence interval (CIW):
1

nout

∑nout
i=1(ŷi,0.975 − ŷi,0.025)

• The last two approaches compares the distribution of yi

instead of comparing just their point predictions
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Back to WEF data

Table: Model comparison

Spatial Non-spatial

AIC 4419 4465
BIC 4448 4486

RMSPE 18 21
CP 93 93

CIW 77 82
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WEF data: Kriged surfaces

DBH Estimates Standard errors
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Summary

• Geostatistics – Analysis of point-referenced spatial data
• Surface plots of data and residuals
• EDA with empirical semivariograms
• Modeling unknown surfaces with Gaussian Processes
• Kriging: Predictions at new locations
• Spatial linear regression using Gaussian Processes
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Linear Regression

• Linear regression is, perhaps, the most widely used statistical
modeling tool.

• It addresses the following question: How does a quantity of
primary interest, y , vary as (depend upon) another quantity,
or set of quantities, x?

• The quantity y is called the response or outcome variable.
Some people simply refer to it as the dependent variable.

• The variable(s) x are called explanatory variables, covariates
or simply independent variables.

• In general, we are interested in the conditional distribution of
y , given x , parametrized as p(y | θ, x). 1



• Typically, we have a set of units or experimental subjects
i = 1, 2, . . . , n.

• For each of these units we have measured an outcome yi and
a set of explanatory variables x⊤

i = (1, xi1, xi2, . . . , xip).

• The first element of x⊤
i is often taken as 1 to signify the

presence of an “intercept.”

• We collect the outcome and explanatory variables into an
n × 1 vector and an n × (p + 1) matrix:

y =


y1
y2
...

yn

 ; X =


1 x11 x12 . . . x1p

1 x21 x22 . . . x2p
... ... ... ... ...
1 xn1 xn2 . . . xnp

 =


x⊤

1
x⊤

2
...

x⊤
n

 .

2



• The linear model is the most fundamental of all serious
statistical models underpinning:

• ANOVA: yi is continuous, xij ’s are all categorical

• REGRESSION: yi is continuous, xij ’s are continuous

• ANCOVA: yi is continuous, xij ’s are continuous for some j and
categorical for others.

3



Conjugate Bayesian Linear Regression

• A conjugate Bayesian linear model is given by:

yi | β, σ2, xi
ind∼ N(µi , σ2); i = 1, 2, . . . , n ;

µi = β0 + β1xi1 + · · · + βpxip = x⊤
i β ; β = (β0, β1, . . . , βp)⊤ ;

β | σ2 ∼ N(µβ, σ2Vβ) ; σ2 ∼ IG(a, b) .

• Unknown parameters include the regression parameters and
the variance, i.e. θ = {β, σ2}.

• We assume X is observed without error and all inference is
conditional on X.

• The above model is often written in terms of the posterior
density p(θ | y) ∝ p(θ, y):

IG(σ2 | a, b) × N(β | µβ, σ2Vβ) ×
n∏

i=1
N(yi | x⊤

i β, σ2).
4



Conjugate Bayesian (General) Linear Regression

• A more general conjugate Bayesian linear model is given by:

y | β, σ2, X ∼ N(Xβ, σ2Vy )
β | σ2 ∼ N(µβ, σ2Vβ) ;
σ2 ∼ IG(a, b) .

• Vy , Vβ and µβ are assumed fixed.
• Unknown parameters include the regression parameters and

the variance, i.e. θ = {β, σ2}.
• We assume X is observed without error and all inference is

conditional on X.
• The posterior density p(θ | y) ∝ p(θ, y):

IG(σ2 | a, b) × N(β | µβ, σ2Vβ) × N(y | Xβ, σ2Vy )

• The model on the previous slide is a special case with Vy = In

(n × n identity matrix). 5



Conjugate Bayesian (General) Linear Regression

• The joint posterior density can be written as

p(β, σ2 | y) ∝
IG(σ2 | a∗, b∗)︸ ︷︷ ︸ × N

(
β | Mm, σ2M

)
︸ ︷︷ ︸

p(σ2 | y) p(β | σ2, y)
,

where

a∗ = a + n
2 ; b∗ = b + 1

2
(
µ⊤

β V−1
β µβ + y⊤V−1

y y − m⊤Mm
)

;

m = V−1
β µβ + X⊤V−1

y y ; M−1 = V−1
β + X⊤V−1

y X .

• Exact posterior sampling from p(β, σ2 | y) will automatically
yield samples from p(β | y) and p(σ2 | y).

• For each j = 1, 2, . . . , N do the following:
1. Draw σ2

(j) ∼ IG(a∗, b∗)
2. Draw β(j) ∼ N

(
Mm, σ2

(j)M
)

• The above is sometimes referred to as composition sampling.
6



Exact sampling from joint posterior distributions

• Suppose we wish to draw samples from a joint posterior:

p(θ1, θ2 | y) = p(θ1 | y) × p(θ2 | θ1, y) .

• In conjugate models, it is often easy to draw samples from
p(θ1 | y) and from p(θ2 | θ1, y).

• We can draw N samples from p(θ1, θ2 | y) as follows.

• For each j = 1, 2, . . . , N do the following:
1. Draw θ1(j) ∼ p(θ1 | y)
2. Draw θ2(j) ∼ p(θ2 | θ1(j), y)

• Remarkably, the θ2(j)’s drawn above have marginal
distribution p(θ2 | y) (see, Gelfand and Smith 1990).

• “Automatic Marginalization” we draw samples p(θ1, θ2 | y)
and automatically get samples from p(θ1 | y) and p(θ2 | y).

7



Bayesian predictions from linear regression

• Let ỹ denote an m × 1 vector of outcomes we seek to predict
based upon predictors X̃.

• We seek the posterior predictive density:

p(ỹ | y) =
∫

p(ỹ | θ, y)p(θ | y)dθ.

• Posterior predictive inference: sample from p(ỹ | y).

• For each j = 1, 2, . . . , N do the following:
1. Draw θ(j) ∼ p(θ | y)

2. Draw ỹ(j) ∼ p(ỹ | θ(j), y)

8



Bayesian predictions from linear regression (cont’d)

• For legitimate probabilistic predictions (forecasting), the
conditional distribution p(ỹ | θ, y) must be well-defined.

• For example, consider the case with Vy = In. Specify the
linear model:[

y
ỹ

]
=
[
X
X̃

]
β +

[
ϵ

ϵ̃

]
;
[
ϵ

ϵ̃

]
∼ N

([
0
0

]
, σ2

[
In O
O Im

])
.

• Easy to derive the conditional density:

p(ỹ | θ, y) = p(ỹ | θ) = N(ỹ | X̃β, σ2Im)

• Posterior predictive density:

p(ỹ | y) =
∫

N(ỹ | X̃β, σ2Im)p(β, σ2 | y)dβdσ2 .

• For each j = 1, 2, . . . , N do the following:
1. Draw {β(j), σ2

(j)} ∼ p(β, σ2 | y)

2. Draw ỹ(j) ∼ N(X̃β(j), σ2
(j)Im) 9



Bayesian predictions from general linear regression

• For example, consider the case with general Vy . Specify:

[
y
ỹ

]
=
[
X
X̃

]
β +

[
ϵ

ϵ̃

]
;
[
ϵ

ϵ̃

]
∼ N

([
0
0

]
, σ2

[
Vy Vyỹ

V⊤
yỹ Vỹ

])
.

• Derive the conditional density
p(ỹ | θ, y) = N

(
ỹ | µỹ |y , σ2Vỹ |y

)
:

µỹ |y = X̃β + V⊤
yỹ V−1

y (y − Xβ) ; Vỹ |y = Vỹ − V⊤
yỹ V−1

y Vyỹ .

• Posterior predictive density:

p(ỹ | y) =
∫

N
(
ỹ | µỹ |y , σ2Vỹ |y

)
p(β, σ2 | y)dβdσ2.

• For each j = 1, 2, . . . , N do the following:
1. Draw {β(j), σ2

(j)} ∼ p(β, σ2 | y)

2. Compute µỹ |y using β(j) and draw ỹ(j) ∼ N(µỹ |y , σ2
(j)Vỹ )

10



Application to Bayesian Geostatistics

• Consider the spatial regression model

y(si) = x⊤(si)β + w(si) + ϵ(si),

where w(si)’s are spatial random effects and ϵ(si)’s are
unstructured errors (“white noise”).

• w = (w(s1), w(s2), . . . , w(sn))⊤ ∼ N(0, σ2R(ϕ))
• ϵ = (ϵ(s1), ϵ(s2), . . . , ϵ(sn))⊤ ∼ N(0, τ2In)
• Integrating out random effects leads to a Bayesian model:

IG(σ2 | a, b) × N(β | µβ, σ2Vβ) × N(y | Xβ, σ2Vy )

where Vy = R(ϕ) + αIn and α = τ2/σ2.
• Fixing ϕ and α (e.g., from variogram or other EDA) yields a

conjugate Bayesian model (see bayesGeostatExact() in
spBayes package).

• Exact posterior sampling is easily achieved as before!
11



Inference on spatial random effects

• Rewrite the model in terms of w as:

IG(σ2 | a, b)×N(β | µβ, σ2Vβ) × N(w | 0, σ2R(ϕ))
× N(y | Xβ + w, τ2In).

• Posterior distribution of spatial random effects w:

p(w | y) =
∫

N(w | Mm, σ2M) × p(β, σ2 | y)dβdσ2 ,

where m = (1/α)(y − Xβ) and M−1 = R−1(ϕ) + (1/α)In.

• For each j = 1, 2, . . . , N do the following:
1. Draw {β(j), σ2

(j)} ∼ p(β, σ2 | y)

2. Compute m from β(j) and draw w(j) ∼ N(Mm, σ2
(j)M)

12



Inference on the process

• Posterior distribution of w(s0) at new location s0:

p(w(s0) | y) =
∫

N(w(s0) | µw(s0)|w , σ2
w(s0)|w )×p(σ2, w | y)dσ2dw ,

where

µw(s0)|w = r⊤(s0; ϕ)R−1(ϕ)w ;
σ2

w(s0)|w = σ2{1 − r⊤(s0; ϕ)R−1(ϕ)r(s0, ϕ)}

• For each j = 1, 2, . . . , N do the following:
1. Compute µw(s0)|w and σ2

w(s0)|w from w(j) and σ2
(j).

2. Draw w(j)(s0) ∼ N(µw(s0)|w , σ2
w(s0)|w ).
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Bayesian “kriging” or prediction

• Posterior predictive distribution at new location s0 is
p(y(s0) | y):∫

N(y(s0) | x⊤(s0)β + w(s0), ασ2) × p(β, σ2, w | y)dβdσ2dw ,

• For each j = 1, 2, . . . , N do the following:
1. Draw y(j)(s0) ∼ N(x⊤(s0)β(j) + w(j)(s0), ασ2

(j)).

14



Non-conjugate models: The Gibbs Sampler

• Let θ = (θ1, . . . , θp) be the parameters in our model.

• Initialize with starting values θ(0) = (θ(0)
1 , . . . , θ

(0)
p )

• For j = 1, . . . , N, update successively using the full conditional
distributions:

θ
(j)
1 ∼ p(θ(j)

1 | θ
(j−1)
2 , . . . , θ

(j−1)
p , y)

θ
(j)
2 ∼ p(θ2 | θ

(j)
1 , θ

(j−1)
3 , . . . , θ

(j−1)
p , y)

...
(the generic k th element)
θ

(j)
k ∼ p(θk |θ(j)

1 , . . . , θ
(j)
k−1, θ

(j−1)
k+1 , . . . , θ

(j−1)
p , y)

...
θ

(j)
p ∼ p(θp | θ

(j)
1 , . . . , θ

(j)
p−1, y)
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• In principle, the Gibbs sampler will work for extremely
complex hierarchical models. The only issue is sampling from
the full conditionals. They may not be amenable to easy
sampling – when these are not in closed form. A more general
and extremely powerful - and often easier to code - algorithm
is the Metropolis-Hastings (MH) algorithm.

• This algorithm also constructs a Markov chain, but does not
necessarily care about full conditionals.

• Popular approach: Embed Metropolis steps within Gibbs to
draw from full conditionals that are not accessible to directly
generate from.

16



When we don’t want to fix ϕ and α = τ 2/σ2

Latent Bayesian Model

N(y | Xβ + w, τ2I) × N(w | 0, σ2R(ϕ)) × N(β | µβ, Vβ)
× IG(τ2 | aτ , bτ ) × IG(σ2 | aσ, bσ) × Unif (ϕ | aϕ, bϕ)

Sampler:

• Full conditionals for β, τ2, σ2 and w(si)’s
• Metropolis step for updating ϕ

• Pros: Full conditional distributions for all parameters except
ϕ, easy to code up

• Cons: High-dimensional parameter space can mean slow
convergence

17



When we don’t want to fix ϕ and α = τ 2/σ2 (cont’d)

Collapsed Bayesian Model

N(y | Xβ, σ2R(ϕ) + τ2I) × N(β | µβ, Vβ)
× IG(τ2 | aτ , bτ ) × IG(σ2 | aσ, bσ) × Unif (ϕ | aϕ, bϕ)

Sampler:

• Full conditional for β

• Metropolis step for updating τ2, σ2, ϕ

• Pros: Low-dimensional parameter space
• “Recover” w(si)’s in a posterior predictive fashion

We can also integrate out β! See Finley et al. (2015) for details
https://www.jstatsoft.org/article/view/v063i13 and
implementation in the spBayes package.

18
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The Metropolis-Hastings Algorithm

• The Metropolis-Hastings algorithm: Start with a initial value for θ = θ(0).
Select a candidate or proposal distribution from which to propose a value
of θ at the j-th iteration: θ(j) ∼ q(θ(j−1), ν). For example,
q(θ(j−1), ν) = N(θ(j−1), ν) with ν fixed.

• Compute

r = p(θ∗ | y)q(θ(j−1) | θ∗, ν)
p(θ(j−1) | y)q(θ∗ | θ(j−1)ν)

• If r ≥ 1 then set θ(j) = θ∗. If r ≤ 1 then draw U ∼ (0, 1). If U ≤ r then
θ(j) = θ∗. Otherwise, θ(j) = θ(j−1).

• Repeat for j = 1, . . . N. This yields θ(1), . . . , θ(N), which, after a burn-in
period, will be samples from the true posterior distribution. It is
important to monitor the acceptance ratio r of the sampler through the
iterations. Rough recommendations: for vector updates r ≈ 20%., for
scalar updates r ≈ 40%. This can be controlled by “tuning” ν.

• Popular approach: Embed Metropolis steps within Gibbs to draw from
full conditionals that are not accessible to directly generate from.
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• Example: For the linear model, our parameters are (β, σ2). We write
θ = (β, log(σ2)) and, at the j-th iteration, propose θ∗ ∼ N(θ(j−1), Σ). The log
transformation on σ2 ensures that all components of θ have support on the
entire real line and can have meaningful proposed values from the multivariate
normal. But we need to transform our prior to p(β, log(σ2)).

• Let z = log(σ2) and assume p(β, z) = p(β)p(z). Let us derive p(z).
REMEMBER: we need to adjust for the jacobian. Then
p(z) = p(σ2)|dσ2/dz| = p(ez )ez . The jacobian here is ez = σ2.

• Let p(β) = 1 and an p(σ2) = IG(σ2 | a, b). Then log-posterior is:

−(a + n/2 + 1)z + z −
1
ez {b + 1

2
(Y − Xβ)T (Y − Xβ)}.

• A symmetric proposal distribution, say q(θ∗|θ(j−1), Σ) = N(θ(j−1), Σ), cancels
out in r . In practice it is better to compute log(r):
log(r) = log(p(θ∗ | y) − log(p(θ(j−1) | y)). For the proposal, N(θ(j−1), Σ), Σ is a
d × d variance-covariance matrix, and d = dim(θ) = p + 1.

• If log r ≥ 0 then set θ(j) = θ∗. If log r ≤ 0 then draw U ∼ (0, 1). If U ≤ r (or
log U ≤ log r) then θ(j) = θ∗. Otherwise, θ(j) = θ(j−1).

• Repeat the above procedure for j = 1, . . . N to obtain samples θ(1), . . . , θ(N).
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Consider again the spatially-varying intercept model for generic
location s

y(s) = x(s)⊤β + w(s) + ϵ(s), s ∈ D ⊆ Rd ,

where

y(s) is the outcome,

x(s) is p × 1 set of predictors including an intercept,

β is a vector of p regression parameters,

w(s) is a spatial random effect,

ϵ(s) is the independent noise process with variance τ2.
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Likelihood from (full rank) GP models

• Assuming w(s) ∼ GP(0, Kθ(·, ·)) implies that for a set of n
locations1

w = (w(s1), w(s2), . . . , w(sn))⊤ ∼ MVN(0, Kθ)

• Estimating process parameters from the likelihood involves:

p(w) ∝ −1
2 log det(Kθ) − 1

2w⊤K−1
θ w

• Bayesian inference: priors on θ and many Markov chain
Monte Carlo (MCMC) iterations

1Kθ(·, ·) is any valid spatial covariance function, e.g., σ2R(·, ·; ϕ), with
θ =

(
σ2, ϕ

)
.
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Computation issues

• Storage: n2 pairwise distances to compute Kθ

• Kθ is dense; Need to solve Kθx = b and need det(Kθ)

• This is best achieved using chol(Kθ) = LDL⊤

• Complexity: roughly O(n3) flops

Computationally infeasible for large datasets

3



Burgeoning literature on spatial big data

• Low-rank models: (Wahba, 1990; Higdon, 2002; Rasmussen and
Williams, 2006; Cressie and Johannesson, 2008; Banerjee et al.,
2008, 2010; Gramacy and Lee, 2008; Finley et al., 2009; Lemos and
Sansó, 2009; Sang et al., 2011; Sang and Huang, 2012; Guhaniyogi
et al., 2011; Katzfuss and Hammerling, 2017)

• Spectral approximations and composite likelihoods: (Fuentes, 2007;
Paciorek, 2007; Eidsvik et al., 2014)

• Multi-resolution approaches: (Nychka et al., 2015; Johannesson et
al., 2007; Katzfuss, 2017; Guhaniyogi and Sanso, 2020)

• Sparsity: (Solve Ax = b by (i) sparse A, or (ii) sparse A−1)
1. Covariance tapering (Furrer et al., 2006; Du et al., 2009;

Kaufman et al., 2008; Stein, 2013; Shaby and Ruppert, 2012)
2. GMRFs to GPs: INLA (Rue et al., 2009; Lindgren et al., 2011)
3. LAGP Gramacy et al., 2014; Gramacy and Apley, 2015)
4. Nearest-neighbor Gaussian Process (NNGP) models (Datta et

al., 2016a,c,b; Finley et al., 2019a) builds on Vecchia (1988). 4



Reduced (Low) rank models

• Kθ ≈ JθK∗
θJ⊤

θ + Dθ

• Jθ is n × r matrix of spatial basis functions, r << n

• K∗
θ is r × r spatial covariance matrix

• Dθ is either diagonal or sparse

• Examples: Kernel projections, Splines, Predictive process,
FRK, spectral basis . . .

• Computations exploit above structure: roughly
O(nr2) << O(n3) flops

5



Reduced (Low) rank models (cont’d)

Low-rank models: hierarchical approach
N(w∗ | 0, K∗

θ) × N(w | Jθw∗, D)

• w is n × 1 and n is large
• w∗ is r × 1, where r << n, defined over a user-defined set of

locations, or knots, S ∗ = {s∗
1 , s∗

2 , . . . , s∗
r }.

• Jθ is n × r is a matrix of “basis” functions
• D is n × n, but easy to invert (e.g., diagonal)
• Derive var(w) (or var(w∗ | y)) in alternate ways to obtain

(JθK∗
θJ⊤

θ + D)−1 = D−1 − D−1Jθ(K∗−1
θ + J⊤

θ D−1Jθ)−1J⊤
θ D−1 .

This is the famous Sherman-Woodbury-Morrison formula.

See, e.g., Finley et al. (2017) for implantation details and software for
the Gaussian predictive process (GPP) model. 6



Simulation experiment

• 2500 locations on a unit square

• y(s) = β0 + β1x(s) + w(s) + ϵ(s)

• Single covariate x(s) generated as iid N(0, 1)

• Spatial effects generated from GP(0, σ2R(·, · | ϕ))

• R(·, · | ϕ) is exponential correlation function with decay ϕ

• Candidate models: Full GP and Gaussian Predictive Process
(GPP) with 64 knots

7



Oversmoothing due to reduced-rank models

True w Full GP GPP 64 knots
Figure: Comparing full GP vs low-rank GPP with 2500 locations. Figure
(c) exhibits oversmoothing by a low-rank process (predictive process with
64 knots)

See Stein (2014) for very good reasons NOT to use reduced-rank
spatial models. 8



Low rank Gaussian Predictive Process

Pros
• Proper Gaussian process
• Allows for coherent spatial interpolation at arbitrary resolution
• Can be used as prior for spatial random effects in any

hierarchical setup for spatial data
• Computationally tractable

9



Low rank Gaussian Predictive Process

Cons

True w Full GP PP 64 knots
Figure: Comparing full GP vs low-rank GP with 2500 locations

• Low rank models, like the GPP, tend to oversmooth
• Increasing the number of knots can fix this but will lead to

heavy computation
9



Sparse matrices

• Idea: Use a sparse matrix instead of a low rank matrix to
approximate the dense full GP covariance matrix

• Goals:
• Scalability: Both in terms of storage and computing inverse

and determinant

• Closely approximate full GP inference

• Proper Gaussian process model like the GPP

10



Cholesky factors

• Write a joint density p(w) = p(w1, w2, . . . , wn) as:

p(w1)p(w2 | w1)p(w3 | w1, w2) · · · p(wn | w1, w2, . . . , wn−1)

• For Gaussian distribution w ∼ N(0, Kθ) this ⇒

w1 = 0 + η1;
w2 = a21w1 + η2;
· · · · · · · · ·
wn = an1w1 + an2w2 + · · · + an,n−1wn−1 + ηn;

11



Cholesky factors

• Write a joint density p(w) = p(w1, w2, . . . , wn) as:

p(w1)p(w2 | w1)p(w3 | w1, w2) · · · p(wn | w1, w2, . . . , wn−1)

• For Gaussian distribution w ∼ N(0, Kθ) this ⇒

w1

w2

w3
...

wn


=



0 0 0 . . . 0 0
a21 0 0 . . . 0 0
a31 a32 0 . . . 0 0
... ... ... ... ... ...

an1 an2 an3 . . . an,n−1 0





w1

w2

w3
...

wn


+



η1

η2

η3
...

ηn


=⇒ w = Aw + η; η ∼ N(0, D).
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Cholesky factors

• Write a joint density p(w) = p(w1, w2, . . . , wn) as:

p(w1)p(w2 | w1)p(w3 | w1, w2) · · · p(wn | w1, w2, . . . , wn−1)

• For Gaussian distribution w ∼ N(0, Kθ) this ⇒

w1

w2

w3
...

wn


=



0 0 0 . . . 0 0
a21 0 0 . . . 0 0
a31 a32 0 . . . 0 0
... ... ... ... ... ...

an1 an2 an3 . . . an,n−1 0





w1

w2

w3
...

wn


+



η1

η2

η3
...

ηn


=⇒ w = Aw + η; η ∼ N(0, D).

• Cholesky factorization:

Kθ = (I − A)−1D(I − A)−⊤, where D = diag(var{wi | w{j<i}})

11



Cholesky factors

• For Gaussian distribution N(w | 0, Kθ),

Kθ = (I − A)−1D(I − A)−⊤ ; D = diag(var{wi | w{j<i}})

• If L is from chol(Kθ) = LDL⊤, then L−1 = I − A.

• aij ’s obtained from n − 1 linear systems by comparing
coefficients of wj ’s in∑

j<i
aijwj = E[wi | w{j<i}] i = 2, . . . , n

• Non-zero elements of A and D are computed:
D[1,1] = K[1,1] and first row of A is zero.
for(i in 1:(n-1)) {

A[i+1,1:i] = solve(K[1:i,1:i], K[1:i,i+1])

D[i+1,i+1] = K[i+1,i+1] - dot(K[i+1,1:i],A[i+1,1:i])

} 12



Cholesky Factors and Directed Acyclic Graphs (DAGs)
Full dependency graph

1

2

3

4

5

67

• Number of non-zero entries (sparsity) of A equals number of
arrows in the graph

• In particular: Sparsity of the i th row of A is same as the
number of arrows towards i in the DAG

13



Introducing sparsity via graphical models
Full dependency graph

1

2

3

4

5

67

p(y1)p(y2 | y1)p(y3 | y1, y2)p(y4 | y1, y2, y3)
× p(y5 | y1, y2, y3, y4)p(y6 | y1, y2, . . . , y5)p(y7 | y1, y2, . . . , y6) .
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Introducing sparsity via graphical models
3−Nearest neighbor dependency graph

1

2

3

4

5

67

p(y1)p(y2 | y1)p(y3 | y1, y2)p(y4 | y1, y2, y3)
p(y5 |��y1, y2, y3, y4)p(y6 | y1,��y2,��y3, y4, y5)p(y7 | y1, y2,��y3,��y4,��y5, y6)

14



Introducing sparsity via graphical models
3−Nearest neighbor dependency graph

1

2

3

4

5

67

• Create a sparse DAG by keeping at most m arrows pointing to
each node

• Set aij = 0 for all i , j which has no arrow between them
• Fixing aij = 0 introduces conditional independence and wj

drops out from the conditional set in p(wi | {wk : k < i})
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Introducing sparsity via graphical models
3−Nearest neighbor dependency graph

1

2

3

4

5

67

• N(i) denote neighbor set of i , i.e., the set of nodes from
which there are arrows to i

• aij = 0 for j /∈ N(i) and nonzero aij ’s obtained by solving:

E[wi | wN(i)] =
∑

j∈N(i)
aijwj

• The above linear system is only m × m 15



• Non-zero elements of sparse A and D are computed:

D[1,1] = K[1,1] and first row of A is zero.
for(i in 1:(n-1)) {

Pa = N[i+1] # neighbors of i+1

A[i+1,Pa] = solve(K[Pa,Pa], K[i+1,Pa])

D[i+1,i+1] = K[i+1,i+1] - dot(K[i+1,Pa],A[i+1,Pa])

}

• We need to solve n − 1 linear systems of size at most m × m.
• We effectively model a (sparse) Cholesky factor instead of

computing it.

16



Choosing neighbor sets

Matern Covariance Function:

K (si , sj) = 1
2ν−1Γ(ν)(||si − sj ||ϕ)νKν(||si − sj ||ϕ); ϕ > 0, ν > 0,

17



Choosing neighbor sets

• Spatial covariance functions decay with distance

• Vecchia (1988): N(si) = m−nearest neighbors of si in
s1, s2, . . . , si−1

• Nearest points have highest correlations
• Theory: “Screening effect” – Stein, 2002

• We use Vecchia’s choice of m-nearest neighbor

• Other choices proposed in Stein et al. (2004); Gramacy and
Apley (2015); Guinness (2018) can also be used, with
additional discussion in Finley et al. (2019) and Katzfuzz and
Guinness (2021)

18



Nearest neighbors

19



Sparse precision matrices

• The neighbor sets and the covariance function K (·, ·) define a
sparse Cholesky factor A

• N(w | 0, Kθ) ≈ N(w | 0, K̃θ) ; K̃−1
θ = (I − A)⊤D−1(I − A)

I − A D−1 K̃−1
θ

• det(K̃θ) = ∏n
i=1 Di ,

• K̃−1
θ is sparse with O(nm2) entries

Explore some A and K̃−1
θ sparsity patterns https://github.com/finleya/NNGP_LDL 20

https://github.com/finleya/NNGP_LDL


Extension to a Process

• We have defined w ∼ N(0, K̃θ) over the set of data locations
S = {s1, s2, . . . , sn}

• For s /∈ S, define N(s) as set of m-nearest neighbors of s in S

• Define w(s) = ∑
i :si ∈N(s) ai(s)w(si) + η(s) where

η(s) ind∼ N(0, d(s))
• ai(s) and d(s) are once again obtained by solving m × m

system

• Well-defined GP over entire domain
• Nearest Neighbor GP (NNGP) – Datta et al., JASA, (2016)

21



Hierarchical spatial regression with NNGP

Spatial linear model
y(s) = x(s)⊤β + w(s) + ϵ(s)

• w(s) modeled as NNGP derived from a GP(0, (·, ·, | σ2, ϕ))

• ϵ(s) iid∼ N(0, τ2) contributes to the nugget

• Priors for the parameters β, σ2, τ2 and ϕ

• Only difference from a full GP model is the NNGP prior w(s)

22



Hierarchical spatial regression with NNGP

Full Bayesian Model

N(y | Xβ + w, τ2I) × N(w | 0, K̃θ) × N(β | µβ, Vβ)
× IG(τ2 | aτ , bτ ) × IG(σ2 | aσ, bσ) × Unif (ϕ | aϕ, bϕ)

Gibbs sampler:

• Full conditionals for β, τ2, σ2 and w(si)’s
• Metropolis step for updating ϕ

• Posterior predictive distribution at any location using
composition sampling

23



Choosing m

• Run NNGP in parallel for few values of m

• Choose m based on model evaluation metrics

• Our results suggested that typically m ≈ 20 yielded excellent
approximations to the full GP

24



Storage and computation

• Storage:
• Never needs to store n × n distance matrix
• Stores smaller m × m matrices
• Total storage requirements O(nm2)

• Computation:
• Only involves inverting small m × m matrices
• Total flop count per iteration of Gibbs sampler is O(nm3)

• Since m ≪ n, NNGP offers great scalability for large datasets

25



Simulation experiment

• 2500 locations on a unit square

• y(s) = β0 + β1x(s) + w(s) + ϵ(s)

• Single covariate x(s) generated as iid N(0, 1)

• Spatial effects generated from GP(0, σ2R(·, · | ϕ))

• R(·, · | ϕ) is exponential correlation function with decay ϕ

• Candidate models: Full GP, Gaussian Predictive Process
(GPP) with 64 knots and NNGP

26



Fitted Surfaces

True w Full GP GPP 64 knots

NNGP, m = 10 NNGP, m = 20

Figure: Univariate synthetic data analysis 27



Parameter estimates

NNGP Predictive Process Full
True m = 10 m = 20 64 knots Gaussian Process

β0 1 1.00 (0.62, 1.31) 1.03 (0.65, 1.34) 1.30 (0.54, 2.03) 1.03 (0.69, 1.34)
β1 5 5.01 (4.99, 5.03) 5.01 (4.99, 5.03) 5.03 (4.99, 5.06) 5.01 (4.99, 5.03)
σ2 1 0.96 (0.78, 1.23) 0.94 (0.77, 1.20) 1.29 (0.96, 2.00) 0.94 (0.76, 1.23)
τ2 0.1 0.10 (0.08, 0.13) 0.10 (0.08, 0.13) 0.08 (0.04, 0.13) 0.10 (0.08, 0.12)
ϕ 12 12.93 (9.70, 16.77) 13.36 (9.99, 17.15) 5.61 (3.48, 8.09) 13.52 (9.92, 17.50)
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Model evaluation

NNGP Predictive Process Full
m = 10 m = 20 64 knots Gaussian Process

DIC score 2390 2377 13678 2364
RMSPE 1.2 1.2 1.68 1.2

Run time (Minutes) 14.40 46.47 43.36 560.31

• NNGP performs at par with Full GP
• GPP oversmooths and performs much worse both in terms of

parameter estimation and model comparison
• NNGP yields huge computational gains
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Multvariate spatial linear model

• Spatial linear model for q-variate spatial data:
yi(s) = x⊤

i (s)βi + wi(s) + ϵi(s) for i = 1, 2, . . . , q

• ϵ(s) = (ϵ1(s), ϵ2(s), . . . , ϵq(s))⊤ ∼ N(0, E ) where E is the
q × q noise matrix

• w(s) = (w1(s), w2(s), . . . , wq(s))⊤ is modeled as a q-variate
Gaussian process

30



Multivariate GPs

• Cov(w(si), w(sj)) = K (si , sj | θ) – a q × q cross-covariance
matrix

• Choices for the function K (·, · | θ)
• Multivariate Matérn
• Linear model of co-regionalization

• For data observed at n locations, all choices lead to a dense
nq × nq matrix Kθ = Cov(w(s1), w(s2), . . . , w(sn))

• Not scalable when nq is large
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Multivariate NNGPs

• Cholesky factor approach similar to the univariate case

w(s1)
w(s2)
w(s3)

...
w(sn)


=



0 0 0 . . . 0 0
A21 0 0 . . . 0 0
A31 A32 0 . . . 0 0

... ... ... ... ... ...
An1 An2 An3 . . . An,n−1 0





w(s1)
w(s2)
w(s3)

...
w(sn)


+



η(s1)
η(s2)
η(s3)

...
η(sn)


=⇒ w = Aw + η; η ∼ N(0, D), D = diag(D1, D2, . . . , Dn).

Only differences:

• w(si) and η(si)’s are q × 1 vectors and Aij and Di ’s are q × q
matrix

• we must solve n − 1 at most mq × mq linear systems
(challenging when q gets large, e.g., q > 5).
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U.S. Forest biomass data

Observed biomass NDVI

• Forest biomass data from measurements at 114,371 plots

• NDVI (greenness) is used to predict forest biomass
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U.S. Forest biomass data

Non Spatial Model
Biomass = β0 + β1NDVI + error , β̂0 = 1.043, β̂1 = 0.0093

Residuals Variogram of residuals

Strong spatial pattern among residuals
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Forest biomass dataset

• n ≈ 105 (Forest Biomass) ⇒ full GP requires storage ≈ 40Gb
and time ≈ 140 hrs per iteration.

• We use a spatially varying coefficients NNGP model

Model

• Biomass(s) = β0(s) + β1(s)NDVI(s) + ϵ(s)

• w(s) = (β0(s), β1(s))⊤ ∼ Bivariate NNGP(0, K̃ (·, · | θ)),
m = 5

• Time ≈ 6 seconds per iteration

• Full inferential output: 41 hours (25000 MCMC iterations)
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Forest biomass data

Observed biomass Fitted biomass

β0(s) βNDVI(s)
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Reducing parameter dimensionality

• The Gibbs sampler algorithm for the NNGP updates
w(s1), w(s2), . . . , w(sn) sequentially

• Dimension of the MCMC for this sequential algorithm is O(n)

• If the number of data locations n is very large, this
high-dimensional MCMC can converge slowly

• Although each iteration for the NNGP model will be very fast,
many more MCMC iterations may be required
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Collapsed NNGP

• Same model:

y(s) = x(s)⊤β + w(s) + ϵ(s)
w(s) ∼ NNGP(0, K (·, · | θ))

ϵ(s) iid∼ N(0, τ2)

• Latent model: y ∼ N(Xβ + w, τ2I); w ∼ N(0, K̃θ)

• Collapsed model: Marginalizing out w, y ∼ N(Xβ, τ2I + K̃θ)
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Collapsed NNGP

y ∼ N(Xβ, τ2I + K̃θ)

• Only involves few parameters β, τ2 and θ =
(
σ2, ϕ

)
• Drastically reduces the MCMC dimensionality
• Gibbs sampler updates are based on sparse linear systems

using K̃−1
θ (e.g., use CHOLMOD)

• Improved MCMC convergence
• Can recover posterior distribution of w | y
• Complexity of the algorithm depends on the design of the

data locations and is not guaranteed to be O(n)
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Response NNGP

• w(s) ∼ GP(0, K (·, · | θ)) ⇒ y(s) ∼ GP(x(s)⊤β, Σ(·, · | τ2, θ))
• Σ(si , sj) = K (si , sj | θ) + τ2 δ(si = sj) (δ is Kronecker delta)
• We can directly derive the NNGP covariance function

corresponding to Σ(·, ·)
• Σ̃ is the NNGP covariance matrix for the n locations
• Response model: y ∼ N(Xβ, Σ̃)
• Storage and computations are guaranteed to be O(n)
• Low dimensional MCMC ⇒ Improved convergence
• Cannot coherently recover w | y

40



Conjugate NNGP

• Full GP model: y ∼ N(Xβ, Σ) where Σ = σ2M
• M = R(ϕ) + αI
• α = τ2/σ2 is the ratio of the noise to signal variance
• Σ̃ = σ2M̃ where M̃ is the NNGP approximation for M

• If ϕ and α are known, M, and hence M̃, are known matrices
• The model becomes a standard Bayesian linear model
• Assume a Normal Inverse Gamma prior for (β, σ2)⊤

• (β, σ2)⊤ ∼ NIG(µβ, Vβ, aσ, bσ), i.e., β | σ2 ∼ N(µβ, σ2Vβ)
and σ2 ∼ IG(aσ, bσ)

• Exact posterior distributions of β and σ2 are available

Can handle n in the 100s of millions!
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Comparison of NNGP models

Latent Collapsed Response Conjugate
O(n) time Yes No Yes Yes

Recovery of w | y Yes Yes No Yes
Parameter High Low Low Low

dimensionality
Inference on θ Yes Yes Yes Partially
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Comparison of NNGP models

Figure: (a) Runtime for 1000 MCMC iterations for n = 100000 and
different number of cores. (b) Runtime for 1000 MCMC iterations using
40 cores and n from 1000 to 5 million. Model type (latent and response)
refers to different NNGP parameterizations, see Finley et al. 2022.
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Summary of Nearest Neighbor Gaussian Processes

• Sparsity inducing Gaussian process
• Constructed from sparse Cholesky factors based on m nearest

neighbors
• Scalability in storage, inverse, and determinant of NNGP

covariance matrix are all O(n)
• Proper Gaussian process, allows for inference using hierarchical

spatial models and predictions at arbitrary spatial resolution
• Closely approximates full GP inference, does not oversmooth

like low rank models
• Extension to multivariate NNGP
• Collapsed and response NNGP models with improved MCMC

convergence
• R packages spNNGP (Finley et al. 2022) and spOccupancy

(Doser et al., 2022) on CRAN
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Code implementation



Very useful libraries for efficient matrix computation:

1. Fortran BLAS (Basic Linear Algebra Subprograms, see
Blackford et al. 2001). Started in late 70s at NASA JPL by
Charles L. Lawson. See http://www.netlib.org/blas.

2. Fortran LAPACK (Linear Algebra Package, see Anderson et al.
1999). Started in mid 80s at Argonne and Oak Ridge National
Laboratories. See http://www.netlib.org/lapack.

Modern math software has a heavy reliance on these libraries, e.g.,
Matlab and R. Routines are also accessible via C, C++, Python,
etc.

1
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Many improvements on the standard BLAS and LAPACK
functions, see, e.g.,

• Intel Math Kernel Library (MKL)

• AMD Core Math Library (ACML)

• Automatically Tuned Linear Algebra Software (ATLAS)

• Matrix Algebra on GPU and Multicore Architecture (MAGMA)

• OpenBLAS http://www.openblas.net

• vecLib (for Mac users only)

2
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Key BLAS and LAPACK functions used in our setting.

Function Description
dpotrf LAPACK routine to compute the Cholesky factoriza-

tion of a real symmetric positive definite matrix.
dtrsv Level 2 BLAS routine to solve the systems of equa-

tions Ax = b, where x and b are vectors and A is a
triangular matrix.

dtrsm Level 3 BLAS routine to solve the matrix equations
AX = B, where X and B are matrices and A is a
triangular matrix.

dgemv Level 2 BLAS matrix-vector multiplication.
dgemm Level 3 BLAS matrix-matrix multiplication.
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Computing environments



Consider different environments:

1. A distributed system consists of multiple autonomous
computers (nodes) that communicate through a network. A
computer program that runs in a distributed system is called a
distributed program. Message Passing Interface (MPI) is a
specification for an Application Programming Interface (API)
that allows many computers to communicate.

2. A shared memory multiprocessing system consists of a single
computer with memory that may be simultaneously accessed
by one or more programs running on multiple Central
Processing Units (CPUs). OpenMP (Open Multi-Processing)
is an API that supports shared memory multiprocessing
programming.

3. A heterogeneous system uses more than one kind of processor,
e.g., CPU & (Graphics Processing Unit) GPU or CPU &
Intel’s Xeon Phi Many Integrated Core (MIC).
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Which environments are right for large n settings?

• MCMC necessitates iterative evaluation of the likelihood
which requires operations on large matrices.

• A specific hurdle is factorization to computing determinant
and inverse of large dense covariance matrices.

• We try to model our way out and use computing tools to
overcome the complexity (e.g., covariance tapering, Kaufman
et al. 2008; low-rank methods, Cressie and Johannesson 2008;
Banerjee et al. 2008, etc.).

• Due to slow network communication and transport of
submatrices among nodes distributed systems are not ideal for
these types of iterative large matrix operations.
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• My lab currently favors shared memory multiprocessing and
heterogeneous systems.

• Newest unit is a Dell Poweredge with 384 GB of RAM, 2
threaded 10-core Xeon CPUs, and 2 Intel Xeon Phi
Coprocessor with 61-cores (244 threads) running a Linux
operating systems.

• Software includes OpenMP coupled with Intel MKL. MKL is a
library of highly optimized, extensively threaded math routines
designed for Xeon CPUs and Phi coprocessors (e.g., BLAS,
LAPACK, ScaLAPACK, Sparse Solvers, Fast Fourier
Transforms, and vector RNGs).
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So what kind of speed up to expect from threaded BLAS and
LAPACK libraries.
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R and threaded BLAS and LAPACK

The BLAS and LAPACK that “ships” with R is single-threaded,
but these can be replaced with multi-threaded libraries.

Windows
• Microsoft R Open: The Enhanced R Distribution

https://mran.microsoft.com/open comes with MLK
https://software.intel.com/en-us/mkl.

• Replace existing R’s libRblas.so with OpenBLAS library
libopenblas.so. OpenBLAS is available here
http://www.openblas.net.

Max OS X
• Mac vecLib obtained via XCode. Use install notes here .

Linux/Unix
• MKL, OpenBLAS, ACML (compile R against MLK or post

compile symbolic link of libRblas.so to libopenblas.so).
• Some additional gains using Intel icc and ifort compilers.
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Non-Gaussian spatial data

• Often data sets preclude Gaussian modeling: y(s) may not
even be continuous

• Examples:
• Binary: presence or absence of a species at location s.
• Count: abundance of a species at location s.
• Categorical: counts of trees by size class at location s.

• Replace Gaussian likelihood by exponential family member
(Diggle, Tawn, and Moyeed (1998)).
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Hierarchical Bayesian approach

• First stage: y(si) are conditionally independent given β and
w(si). Here we use a canonical link function, say
g(E [y(si)]) = η(si) = x(si)⊤β + w(si).

• Second stage: Model w(si) as a Gaussian process:

w ∼ N(0, σ2R(ϕ))

• Third stage: Priors and hyperpriors.
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MCMC sampling for spatial GLMMs

• Additional GLMM flexibility comes at a computational cost:
lose conjugacy of β,w

• Requires more Metropolis steps. Particularly costly for w
• Practical consequence: slower, less efficient algorithms
• Prediction and interpolation proceed as with the Gaussian case
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Binomial Spatial GLMMs

• Suppose y(si) ∼ Binomial(N(si), ψ(si)), where N(si) is the
number of trials and ψ(si) is the probability of success.

• Two efficient implementations of Binomial (Spatial) GLMMs,
both based on the concept of data augmentation:

• Probit data augmentation (Albert and Chib (1993) JASA)
• Pólya-Gamma data augmentation for logistic models (Polson,

Scott, Windle (2013) JASA)

• Both yield closed form full conditional distributions for all
parameters except ϕ.
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Pólya-Gamma data augmentation

• General approach for Bayesian (spatial) logistic regression that
yields conjugate updates of β (and w)

• Introduce augmented data ω(si) for each i = 1, . . . , n, where
ω(si) ∼ PG(N(si), 0)

• Define κ(si) = y(si) − N(si)/2
• Resulting Gibbs sampler is remarkably similar to that of a

Gaussian model with response y(si)∗ = κ(si)/ω(si) and
heteroskedastic variances τ2(si) = 1/ω(si).
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Pólya-Gamma data augmentation

• Suppose y(si) ∼ Bernoulli(ψ(si)).

ψ(si)y(si )(1 − ψ(si))1−y(si ) = exp(x(si)⊤β + w(si))y(si )

1 + exp(xs⊤
i β + w(si))

= exp(κ(si)(x(si)⊤β + w(si)))×∫
exp(−ω(si)

2 (x(si)⊤β + w(si)))2×

p(ω(si) | 1, 0)dω(si),

• p(ω(si) | 1, 0) is the Pólya-Gamma PDF with parameters 1
and 0

• With Gaussian priors on β and IG prior on σ2, full
conditionals for β, σ2, and w are available in closed form. ϕ
updated with MH.

• See Polson, Scott, Windle (2013) JASA
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Example: species distribution modeling

• Objective: predict the distribution of Loggerhead Shrike
across the US

y(si) ∼ Bernoulli(ψ(si))
logit(ψ(si)) = x(si)⊤β + w(si)

w ∼ N(0, σ2R(ϕ))
β ∼ N(µβ,Σβ)
σ2 ∼ IG(aσ, bσ)
ϕ ∼ Uniform(l , u)

ω(si) ∼ PG(1, 0)
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Example: species distribution modeling

Posterior predictive inference proceeds as with the Gaussian case
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Some practical considerations

• Priors for σ2 and ϕ may need to be more informative,
particularly for binary data.

• Be careful with non-identity link functions when thinking
about priors.

• Pólya-Gamma data augmentation also applicable for Negative
Binomial count data, but slow for large counts and can be
unstable.

9



Some practical considerations

• Priors for σ2 and ϕ may need to be more informative,
particularly for binary data.

• Be careful with non-identity link functions when thinking
about priors.
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Software

• spBayes
• Univariate and multivariate, full GPs or predictive processes
• Gaussian, Binomial (no Pólya-Gamma data augmentation),

Poisson
• spNNGP

• Univariate, NNGPs
• Gaussian, Binomial

• spOccupancy
• Univariate and multivariate, focus on modeling wildlife

distributions, full GPs or NNGPs
• Bernoulli

• spAbundance
(https://github.com/doserjef/spAbundance)

• Univariate and multivariate, focus on modeling wildlife/plant
abundance, NNGPs

• Gaussian, Poisson, Negative Binomial
10
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Multivariate spatial data

• Point-referenced spatial data often come as multivariate
measurements at each location.

• Examples:
• Environmental monitoring: stations yield measurements on

ozone, NO, CO, and PM2.5.
• Community Ecology: assemblages/communities of species
• Forestry: measurements of stand characteristics age, total

biomass, and average tree diameter.
• Atmospheric modeling: at a given site we observe surface

temperature, precipitation and wind speed
• We anticipate dependence between measurements

• at a particular location
• across locations
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Multivariate spatial generalized linear model

• Spatial generalized linear model for h-variate spatial data for
j = 1, 2, . . . , h and i = 1, . . . , n:

yj(si) ∼ f (µj(si), τj)
µj(si) = g−1(ηj(si)) = x(si)⊤βj + w∗

j (si)

• We can imagine modeling
w∗(si) = (w∗

1(si), w∗
2(si), . . . , w∗

h(si))′ as an h-variate Gaussian
process

• Could model using Multivariate NNGP as disussed previously
with SVCs, works well when h < 5.

• But what about when h is large (e.g,. 10, 100)?
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Spatial Factor Model

• Approximates the dependence between multivariate
(spatially-dependent) outcomes through a linear combination
of a (much) lower-dimensional set of spatial factors

• We represent the h × 1 vector w∗(si) as a linear combination
of latent spatial factors and factor loadings:

w∗(si) = Λw(si)

• Λ is an h × q loadings matrix and w(si) is a q × 1 vector of
realizations from q independent spatial GPs

• In traditional factor analysis, w(si) are realizations from
independent standard normal random variables.
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Spatial Factor Model

• Choosing q << h leads to substantial computational
reductions.

• Simple to code: just sample from q independent GPs as with
basic univariate models.

• Yields a non-separable multivariate cross-covariance function
between location si and si ′ :
cov(w∗(si), w∗(si ′)) = ∑q

k=1 ρk(si , si ′ , ϕk)λkλ⊤
k

• Can simply replace the q full GPs with their corresponding
NNGPs to yield a spatial factor NNGP model

• Identifiability constraints on Λ: fix upper triangle to 0 and
diagonal to 1. See Ren and Banerjee (2013) Biometrics
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Priors

• Standard normal priors for the lower triangle of Λ
• We like to model response-specific regression coefficients βj

hierarchically. For each r = 1, . . . , p covariate, we model βj,r

following

βj,r ∼ N(µβr , τ2
βr )

• Gaussian hyperpriors for µβr and IG or half-Cauchy priors for
τ2

βr

• Independent uniform priors for spatial decay parameters ϕ
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Gibbs sampler

• Full conditionals are in closed form for all parameters except
ϕ for Gaussian and Binomial responses.

• Update ϕ with an Adaptive Metroplis-within-Gibbs algorithm
(Roberts and Rosenthal 2009)

• See Taylor-Rodriguez et al. 2019 for Gaussian sampler,
spOccupancy website for Pólya-Gamma sampler

6
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Why we like spatial factor models

• Simple to code (don’t need to deal with cross-covariance
matrices).

• Relatively fast and efficient (well, at least for Gaussian and
Binomial).

• Factors and factor loadings can be used for model-based
ordination.

• Straightforward extensions to spatially-varying coefficient
models.
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Example: bird communities across the continental US
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25°N

30°N

35°N

40°N

45°N

120°W 110°W 100°W  90°W  80°W
Longitude

La
tit

ud
e

5
10
15

(C) Grassland Mean Richness

25°N

30°N

35°N

40°N

45°N

120°W 110°W 100°W  90°W  80°W
Longitude

La
tit

ud
e

1

2

(D) Grassland SD Richness

8



Example: bird communities across the continental US

Visualization of the first spatial factor and corresponding factor
loadings
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Some downsides to spatial factor models

• Convergence assessment is not always straightforward
• Sensitivity to initial values
• Order of the first q responses has important implications for

convergence and mixing.
• Assume a multivariate stochastic process can be represented

as a linear combination of independent univariate processes
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Software

• spOccupancy: spatial NNGP and non-spatial factor models
for binary data

• spAbundance: Gaussian, Poisson, and NB spatial NNGP and
non-spatial factor models.

• boral: many distributions for non-spatial and spatial factor
models (Hui 2015 MEE ; spatial use full GPs fit in JAGS)

• Hmsc: spatial models using NNGPs (Tikhonov et al. 2019;
MEE )

• spBFA: a variety of spatial models with some nifty priors
(Berchuck et al. 2022 Bayesian Analysis)
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Exercise

Modeling the distribution of 10 tree species across Vermont
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Spatially-Varying Coefficient Models

• Extension of spatial regression approaches that allow
regression coefficients to vary across space, and not just the
intercept

• SVC models are random slopes models, with spatial structure
given to the random slopes

1



SVC GLMMs

y(si) ∼ f (µ(si), τ)
µ(si) = g−1(η(si)) = x(si)⊤β̃(si)
β̃r (si) = βr + wr (si) for each r = 1, . . . , p

• We can model w(si) using a GP, predictive process, or NNGP
• We can envision modeling w(si) in two ways:

1. Multivariate NNGP (see previous forest biomass example)
2. Independent NNGPs

• Here we focus on the latter
• Pros and cons to both approaches, similar to correlations

between random slopes and intercepts in mixed models
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Potential benefits of SVC models

• Improved predictive performance
• Tremendous flexibility to accommodate spatial variability in

effects
• Hypothesis testing and generation
• Accommodate highly non-linear relationships
• Model spatial variability in trends over time

3



Improved predictive performance

Observed biomass Fitted biomass

β0(s) βNDVI(s)
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More flexibility to accommodate spatial variability in effects

Gray Catbird occurrence trend across the eastern US from
2000-2019

5



Example: Effect of max temperature on Bobolink occurrence
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Software

• spBayes: univariate Gaussian SVC with full GPs
• spOccupancy: univariate Binomial SVC with NNGPs

(multivariate on its way)
• varycoef: maximum likelihood Gaussian SVCs (Dambon et

al. 2021 Spatial Stats.)
• sdmTMB: penalized likelihood and Bayesian SVC GLMMs

(Anderson et al. 2022 bioRxiv)
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Exercise: 10-year occurrence trend of Wood Thrush

• Data come from USGS North American Breeding Bird Survey
• We desire to account for observational biases in detection of

the birds (i.e., false negatives).
• Add on an additional observational layer to our hierarchical

model

8



Exercise: Process model

• Let zt(si) denote the true presence (1) or absence (0) of the
species at site i = 1, . . . , 500 during year t = 1, . . . , 10.

• If the bird was detected at a site and year, we know
zt(si) = 1. If not, it might be there and we just missed it
during the surveys.

• We model zt(si) just as before with a Bernoulli GLM, with a
SVC for trend

zt(si) ∼ Bernoulli(ψt(si))
logit(ψt(si)) = β̃0(si) + β̃1(si) · YEARt

• β̃0(si) and β̃1(si) are modeled as independent SVCs with
NNGPs
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Exercise: Observation model

• Let yt,k(si) denote the observed detection (1) or nondetection
(0) of the bird at site i during year t and survey k = 1, . . . , 5.

• We model yt,k(si) conditional on the true presence/absence of
the species zt(si)

yt,k(si) | zt(si) ∼ Bernoulli(pi ,t,k · zt(si))
logit(pi ,t,k) = α0,t + α1 · DAYi ,t,k + α2 · DAY2

i ,t,k

• A key assumption for identifiability is that zt(si) does not
change across the 5 replicate surveys at site i during year t.
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