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Non-Gaussian spatial data

• Often data sets preclude Gaussian modeling: y(s) may not
even be continuous

• Examples:
• Binary: presence or absence of a species at location s.
• Count: abundance of a species at location s.
• Categorical: counts of trees by size class at location s.

• Replace Gaussian likelihood by exponential family member
(Diggle, Tawn, and Moyeed (1998)).
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Hierarchical Bayesian approach

• First stage: y(si) are conditionally independent given β and
w(si). Here we use a canonical link function, say
g(E [y(si)]) = η(si) = x(si)⊤β + w(si).

• Second stage: Model w(si) as a Gaussian process:

w ∼ N(0, σ2R(ϕ))

• Third stage: Priors and hyperpriors.
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MCMC sampling for spatial GLMMs

• Additional GLMM flexibility comes at a computational cost:
lose conjugacy of β,w

• Requires more Metropolis steps. Particularly costly for w
• Practical consequence: slower, less efficient algorithms
• Prediction and interpolation proceed as with the Gaussian case
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Binomial Spatial GLMMs

• Suppose y(si) ∼ Binomial(N(si), ψ(si)), where N(si) is the
number of trials and ψ(si) is the probability of success.

• Two efficient implementations of Binomial (Spatial) GLMMs,
both based on the concept of data augmentation:

• Probit data augmentation (Albert and Chib (1993) JASA)
• Pólya-Gamma data augmentation for logistic models (Polson,

Scott, Windle (2013) JASA)

• Both yield closed form full conditional distributions for all
parameters except ϕ.
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Pólya-Gamma data augmentation

• General approach for Bayesian (spatial) logistic regression that
yields conjugate updates of β (and w)

• Introduce augmented data ω(si) for each i = 1, . . . , n, where
ω(si) ∼ PG(N(si), 0)

• Define κ(si) = y(si) − N(si)/2
• Resulting Gibbs sampler is remarkably similar to that of a

Gaussian model with response y(si)∗ = κ(si)/ω(si) and
heteroskedastic variances τ2(si) = 1/ω(si).
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Pólya-Gamma data augmentation

• Suppose y(si) ∼ Bernoulli(ψ(si)).

ψ(si)y(si )(1 − ψ(si))1−y(si ) = exp(x(si)⊤β + w(si))y(si )

1 + exp(xs⊤
i β + w(si))

= exp(κ(si)(x(si)⊤β + w(si)))×∫
exp(−ω(si)

2 (x(si)⊤β + w(si)))2×

p(ω(si) | 1, 0)dω(si),

• p(ω(si) | 1, 0) is the Pólya-Gamma PDF with parameters 1
and 0

• With Gaussian priors on β and IG prior on σ2, full
conditionals for β, σ2, and w are available in closed form. ϕ
updated with MH.

• See Polson, Scott, Windle (2013) JASA
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Example: species distribution modeling

• Objective: predict the distribution of Loggerhead Shrike
across the US

y(si) ∼ Bernoulli(ψ(si))
logit(ψ(si)) = x(si)⊤β + w(si)

w ∼ N(0, σ2R(ϕ))
β ∼ N(µβ,Σβ)
σ2 ∼ IG(aσ, bσ)
ϕ ∼ Uniform(l , u)

ω(si) ∼ PG(1, 0)
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Example: species distribution modeling

Posterior predictive inference proceeds as with the Gaussian case
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Some practical considerations

• Priors for σ2 and ϕ may need to be more informative,
particularly for binary data.

• Be careful with non-identity link functions when thinking
about priors.

• Pólya-Gamma data augmentation also applicable for Negative
Binomial count data, but slow for large counts and can be
unstable.

9



Some practical considerations

• Priors for σ2 and ϕ may need to be more informative,
particularly for binary data.

• Be careful with non-identity link functions when thinking
about priors.
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Software

• spBayes
• Univariate and multivariate, full GPs or predictive processes
• Gaussian, Binomial (no Pólya-Gamma data augmentation),

Poisson
• spNNGP

• Univariate, NNGPs
• Gaussian, Binomial

• spOccupancy
• Univariate and multivariate, focus on modeling wildlife

distributions, full GPs or NNGPs
• Bernoulli

• spAbundance
(https://github.com/doserjef/spAbundance)

• Univariate and multivariate, focus on modeling wildlife/plant
abundance, NNGPs

• Gaussian, Poisson, Negative Binomial
10

https://github.com/doserjef/spAbundance

