Modeling non-Gaussian spatial data

Jeffrey Doser ${ }^{1}$ \& Andrew Finley ${ }^{2}$
May 15, 2023
${ }^{1}$ Department of Integrative Biology, Michigan State University.
${ }^{2}$ Department of Forestry, Michigan State University.

Non-Gaussian spatial data

- Often data sets preclude Gaussian modeling: $y(\mathbf{s})$ may not even be continuous
- Examples:
- Binary: presence or absence of a species at location s.
- Count: abundance of a species at location s.
- Categorical: counts of trees by size class at location s.
- Replace Gaussian likelihood by exponential family member (Diggle, Tawn, and Moyeed (1998)).

Hierarchical Bayesian approach

- First stage: $y\left(\mathbf{s}_{i}\right)$ are conditionally independent given β and $w\left(\mathbf{s}_{i}\right)$. Here we use a canonical link function, say $g\left(E\left[y\left(\mathbf{s}_{i}\right)\right]\right)=\eta\left(\mathbf{s}_{i}\right)=\mathbf{x}\left(\mathbf{s}_{i}\right)^{\top} \boldsymbol{\beta}+\mathrm{w}\left(\mathbf{s}_{i}\right)$.

Hierarchical Bayesian approach

- First stage: $y\left(\mathbf{s}_{i}\right)$ are conditionally independent given β and $w\left(\mathbf{s}_{i}\right)$. Here we use a canonical link function, say $g\left(E\left[y\left(\mathbf{s}_{i}\right)\right]\right)=\eta\left(\mathbf{s}_{i}\right)=\mathbf{x}\left(\mathbf{s}_{i}\right)^{\top} \boldsymbol{\beta}+\mathrm{w}\left(\mathbf{s}_{i}\right)$.
- Second stage: Model $w\left(\mathbf{s}_{i}\right)$ as a Gaussian process:

$$
\mathbf{w} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{R}(\phi)\right)
$$

Hierarchical Bayesian approach

- First stage: $y\left(\mathbf{s}_{i}\right)$ are conditionally independent given β and $w\left(\mathbf{s}_{i}\right)$. Here we use a canonical link function, say $g\left(E\left[y\left(\mathbf{s}_{i}\right)\right]\right)=\eta\left(\mathbf{s}_{i}\right)=\mathbf{x}\left(\mathbf{s}_{i}\right)^{\top} \boldsymbol{\beta}+\mathrm{w}\left(\mathbf{s}_{i}\right)$.
- Second stage: Model $w\left(\mathbf{s}_{i}\right)$ as a Gaussian process:

$$
\mathbf{w} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{R}(\phi)\right)
$$

- Third stage: Priors and hyperpriors.

MCMC sampling for spatial GLMMs

- Additional GLMM flexibility comes at a computational cost: lose conjugacy of β, w
- Requires more Metropolis steps. Particularly costly for w
- Practical consequence: slower, less efficient algorithms
- Prediction and interpolation proceed as with the Gaussian case

Binomial Spatial GLMMs

- Suppose $y\left(\mathbf{s}_{i}\right) \sim \operatorname{Binomial}\left(N\left(\mathbf{s}_{i}\right), \psi\left(\mathbf{s}_{i}\right)\right)$, where $N\left(\mathbf{s}_{i}\right)$ is the number of trials and $\psi\left(\mathbf{s}_{i}\right)$ is the probability of success.

Binomial Spatial GLMMs

- Suppose $y\left(\mathbf{s}_{i}\right) \sim \operatorname{Binomial}\left(N\left(\mathbf{s}_{i}\right), \psi\left(\mathbf{s}_{i}\right)\right)$, where $N\left(\mathbf{s}_{i}\right)$ is the number of trials and $\psi\left(\mathbf{s}_{i}\right)$ is the probability of success.
- Two efficient implementations of Binomial (Spatial) GLMMs, both based on the concept of data augmentation:

Binomial Spatial GLMMs

- Suppose $y\left(\mathbf{s}_{i}\right) \sim \operatorname{Binomial}\left(N\left(\mathbf{s}_{i}\right), \psi\left(\mathbf{s}_{i}\right)\right)$, where $N\left(\mathbf{s}_{i}\right)$ is the number of trials and $\psi\left(\mathbf{s}_{i}\right)$ is the probability of success.
- Two efficient implementations of Binomial (Spatial) GLMMs, both based on the concept of data augmentation:
- Probit data augmentation (Albert and Chib (1993) JASA)

Binomial Spatial GLMMs

- Suppose $y\left(\mathbf{s}_{i}\right) \sim \operatorname{Binomial}\left(N\left(\mathbf{s}_{i}\right), \psi\left(\mathbf{s}_{i}\right)\right)$, where $N\left(\mathbf{s}_{i}\right)$ is the number of trials and $\psi\left(\mathbf{s}_{i}\right)$ is the probability of success.
- Two efficient implementations of Binomial (Spatial) GLMMs, both based on the concept of data augmentation:
- Probit data augmentation (Albert and Chib (1993) JASA)
- Pólya-Gamma data augmentation for logistic models (Polson, Scott, Windle (2013) JASA)

Binomial Spatial GLMMs

- Suppose $y\left(\mathbf{s}_{i}\right) \sim \operatorname{Binomial}\left(N\left(\mathbf{s}_{i}\right), \psi\left(\mathbf{s}_{i}\right)\right)$, where $N\left(\mathbf{s}_{i}\right)$ is the number of trials and $\psi\left(\mathbf{s}_{i}\right)$ is the probability of success.
- Two efficient implementations of Binomial (Spatial) GLMMs, both based on the concept of data augmentation:
- Probit data augmentation (Albert and Chib (1993) JASA)
- Pólya-Gamma data augmentation for logistic models (Polson, Scott, Windle (2013) JASA)
- Both yield closed form full conditional distributions for all parameters except ϕ.

Pólya-Gamma data augmentation

- General approach for Bayesian (spatial) logistic regression that yields conjugate updates of β (and \mathbf{w})

Pólya-Gamma data augmentation

- General approach for Bayesian (spatial) logistic regression that yields conjugate updates of β (and \mathbf{w})
- Introduce augmented data $\omega\left(\mathbf{s}_{i}\right)$ for each $i=1, \ldots, n$, where $\omega\left(\mathbf{s}_{i}\right) \sim \operatorname{PG}\left(N\left(\mathbf{s}_{i}\right), 0\right)$

Pólya-Gamma data augmentation

- General approach for Bayesian (spatial) logistic regression that yields conjugate updates of β (and \mathbf{w})
- Introduce augmented data $\omega\left(\mathbf{s}_{i}\right)$ for each $i=1, \ldots, n$, where $\omega\left(\mathbf{s}_{i}\right) \sim \operatorname{PG}\left(N\left(\mathbf{s}_{i}\right), 0\right)$
- Define $\kappa\left(\mathbf{s}_{i}\right)=y\left(\mathbf{s}_{i}\right)-N\left(\mathbf{s}_{i}\right) / 2$

Pólya-Gamma data augmentation

- General approach for Bayesian (spatial) logistic regression that yields conjugate updates of β (and \mathbf{w})
- Introduce augmented data $\omega\left(\mathbf{s}_{i}\right)$ for each $i=1, \ldots, n$, where $\omega\left(\mathbf{s}_{i}\right) \sim \operatorname{PG}\left(N\left(\mathbf{s}_{i}\right), 0\right)$
- Define $\kappa\left(\mathbf{s}_{i}\right)=y\left(\mathbf{s}_{i}\right)-N\left(\mathbf{s}_{i}\right) / 2$
- Resulting Gibbs sampler is remarkably similar to that of a Gaussian model with response $y\left(\mathbf{s}_{i}\right)^{*}=\kappa\left(\mathbf{s}_{i}\right) / \omega\left(\mathbf{s}_{i}\right)$ and heteroskedastic variances $\tau^{2}\left(\mathbf{s}_{i}\right)=1 / \omega\left(\mathbf{s}_{i}\right)$.

Pólya-Gamma data augmentation

- Suppose $y\left(\mathbf{s}_{i}\right) \sim \operatorname{Bernoulli}\left(\psi\left(\mathbf{s}_{i}\right)\right)$.

$$
\begin{aligned}
& \psi\left(\mathbf{s}_{i}\right)^{y\left(\mathbf{s}_{i}\right)}\left(1-\psi\left(\mathbf{s}_{i}\right)\right)^{1-y\left(\mathbf{s}_{i}\right)}=\frac{\exp \left(\mathbf{x}\left(\mathbf{s}_{i}\right)^{\top} \boldsymbol{\beta}+\mathrm{w}\left(\mathbf{s}_{i}\right)\right)^{y\left(\mathbf{s}_{i}\right)}}{1+\exp \left(\mathbf{x} \mathbf{s}_{i}^{\top} \boldsymbol{\beta}+\mathrm{w}\left(\mathbf{s}_{i}\right)\right)} \\
&=\exp \left(\kappa\left(\mathbf{s}_{i}\right)\left(\mathbf{x}\left(\mathbf{s}_{i}\right)^{\top} \boldsymbol{\beta}+\mathrm{w}\left(\mathbf{s}_{i}\right)\right)\right) \times \\
& \int \exp \left(-\frac{\omega\left(\mathbf{s}_{i}\right)}{2}\left(\mathbf{x}\left(\mathbf{s}_{i}\right)^{\top} \boldsymbol{\beta}+\mathrm{w}\left(\mathbf{s}_{i}\right)\right)\right)^{2} \times \\
& p\left(\omega\left(\mathbf{s}_{i}\right) \mid 1,0\right) d \omega\left(\mathbf{s}_{i}\right)
\end{aligned}
$$

- $p\left(\omega\left(\mathbf{s}_{i}\right) \mid 1,0\right)$ is the Pólya-Gamma PDF with parameters 1 and 0
- With Gaussian priors on β and IG prior on σ^{2}, full conditionals for $\boldsymbol{\beta}, \sigma^{2}$, and \mathbf{w} are available in closed form. ϕ updated with MH.
- See Polson, Scott, Windle (2013) JASA

Example: species distribution modeling

- Objective: predict the distribution of Loggerhead Shrike across the US

$$
\begin{aligned}
y\left(\mathbf{s}_{i}\right) & \sim \operatorname{Bernoulli}\left(\psi\left(\mathbf{s}_{i}\right)\right) \\
\operatorname{logit}\left(\psi\left(\mathbf{s}_{i}\right)\right) & =\mathbf{x}\left(\mathbf{s}_{i}\right)^{\top} \boldsymbol{\beta}+w\left(\mathbf{s}_{i}\right) \\
\mathbf{w} & \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{R}(\phi)\right) \\
\boldsymbol{\beta} & \sim N\left(\boldsymbol{\mu}_{\beta}, \boldsymbol{\Sigma}_{\beta}\right) \\
\sigma^{2} & \sim I G\left(a_{\sigma}, b_{\sigma}\right) \\
\phi & \sim \text { Uniform }(I, u) \\
\omega\left(\mathbf{s}_{i}\right) & \sim \operatorname{PG}(1,0)
\end{aligned}
$$

Example: species distribution modeling

Posterior predictive inference proceeds as with the Gaussian case

Some practical considerations

- Priors for σ^{2} and ϕ may need to be more informative, particularly for binary data.

Some practical considerations

- Priors for σ^{2} and ϕ may need to be more informative, particularly for binary data.
- Be careful with non-identity link functions when thinking about priors.

Some practical considerations

- Priors for σ^{2} and ϕ may need to be more informative, particularly for binary data.
- Be careful with non-identity link functions when thinking about priors.
- Pólya-Gamma data augmentation also applicable for Negative Binomial count data, but slow for large counts and can be unstable.

Software

- spBayes
- Univariate and multivariate, full GPs or predictive processes
- Gaussian, Binomial (no Pólya-Gamma data augmentation), Poisson
- spNNGP
- Univariate, NNGPs
- Gaussian, Binomial
- spOccupancy
- Univariate and multivariate, focus on modeling wildlife distributions, full GPs or NNGPs
- Bernoulli
- spAbundance
(https://github.com/doserjef/spAbundance)
- Univariate and multivariate, focus on modeling wildlife/plant abundance, NNGPs
- Gaussian, Poisson, Negative Binomial

