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Non-Gaussian spatial data

= Often data sets preclude Gaussian modeling: y(s) may not
even be continuous
= Examples:

= Binary: presence or absence of a species at location s.
= Count: abundance of a species at location s.
= Categorical: counts of trees by size class at location s.

= Replace Gaussian likelihood by exponential family member
(Diggle, Tawn, and Moyeed (1998)).



Hierarchical Bayesian approach

= First stage: y(s;) are conditionally independent given /3 and
w(s;). Here we use a canonical link function, say

g(Ely(si)]) = n(si) = x(s;) " B + w(s;).
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Hierarchical Bayesian approach

= First stage: y(s;) are conditionally independent given /3 and
w(s;). Here we use a canonical link function, say

g(Ely(s)]) = n(si) = x(s1)" B + w(s).
= Second stage: Model w(s;) as a Gaussian process:

w ~ N(0,0°R(¢))

= Third stage: Priors and hyperpriors.



MCMC sampling for spatial GLMMs

= Additional GLMM flexibility comes at a computational cost:
lose conjugacy of B,w

= Requires more Metropolis steps. Particularly costly for w
= Practical consequence: slower, less efficient algorithms

= Prediction and interpolation proceed as with the Gaussian case
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Binomial Spatial GLMMs

= Suppose y(s;) ~ Binomial(N(s;), % (s;)), where N(s;) is the
number of trials and v (s;) is the probability of success.
= Two efficient implementations of Binomial (Spatial) GLMMs,
both based on the concept of data augmentation:
= Probit data augmentation (Albert and Chib (1993) JASA)
= Pdlya-Gamma data augmentation for logistic models (Polson,
Scott, Windle (2013) JASA)
= Both yield closed form full conditional distributions for all
parameters except ¢.
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Pélya-Gamma data augmentation

= General approach for Bayesian (spatial) logistic regression that
yields conjugate updates of 3 (and w)

= Introduce augmented data w(s;) for each i =1,...,n, where
w(s;) ~ PG(N(s;),0)

= Define k(s;) = y(si) — N(si)/2

= Resulting Gibbs sampler is remarkably similar to that of a

Gaussian model with response y(s;)* = x(s;)/w(s;) and
heteroskedastic variances 72(s;) = 1/w(s;).



Pélya-Gamma data augmentation

= Suppose y(s;) ~ Bernoulli(¢(s;)).
Vs Vyoy(s) _ exP(x(si) B+ w(si))" ™)
Byl ) = e T (o)
= exp((s;)(x(s;) " B +w(si)))

/exp(—w(;i)(X(sf)Tﬂ +w(si)))*x

p(w(si) | 1,0)dw(s;),
= p(w(sj) | 1,0) is the Pélya-Gamma PDF with parameters 1

and 0
= With Gaussian priors on B and IG prior on o2, full

conditionals for 3, o2, and w are available in closed form. ¢
updated with MH.
= See Polson, Scott, Windle (2013) JASA



Example: species distribution modeling

= Objective: predict the distribution of Loggerhead Shrike
across the US

y(si) ~ Bernoulli(¢(s;))
logit(¢(si)) = x(si) " B + w(s))
w ~ N(0,0%R(¢))
B~ N(pg, Xp)
0® ~ 1G(ay, by)
¢ ~ Uniform(/, u)
w(s;) ~ PG(1,0)



Example: species distribution modeling

Posterior predictive inference proceeds as with the Gaussian case
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Some practical considerations

= Priors for 02 and ¢ may need to be more informative,
particularly for binary data.
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Some practical considerations

= Priors for 02 and ¢ may need to be more informative,
particularly for binary data.

= Be careful with non-identity link functions when thinking
about priors.

= Pdlya-Gamma data augmentation also applicable for Negative
Binomial count data, but slow for large counts and can be
unstable.



= spBayes
= Univariate and multivariate, full GPs or predictive processes
= Gaussian, Binomial (no Pélya-Gamma data augmentation),
Poisson
= SpNNGP
= Univariate, NNGPs
= Gaussian, Binomial
= spOccupancy
= Univariate and multivariate, focus on modeling wildlife
distributions, full GPs or NNGPs
= Bernoulli
= spAbundance
(https://github.com/doserjef/spAbundance)
= Univariate and multivariate, focus on modeling wildlife/plant
abundance, NNGPs

= Gaussian, Poisson, Negative Binomial
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