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Multivariate spatial data

• Point-referenced spatial data often come as multivariate
measurements at each location.

• Examples:
• Environmental monitoring: stations yield measurements on

ozone, NO, CO, and PM2.5.
• Community Ecology: assemblages/communities of species
• Forestry: measurements of stand characteristics age, total

biomass, and average tree diameter.
• Atmospheric modeling: at a given site we observe surface

temperature, precipitation and wind speed
• We anticipate dependence between measurements

• at a particular location
• across locations
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Multivariate spatial generalized linear model

• Spatial generalized linear model for h-variate spatial data for
j = 1, 2, . . . , h and i = 1, . . . , n:

yj(si) ∼ f (µj(si), τj)
µj(si) = g−1(ηj(si)) = x(si)⊤βj + w∗

j (si)

• We can imagine modeling
w∗(si) = (w∗

1(si), w∗
2(si), . . . , w∗

h(si))′ as an h-variate Gaussian
process

• Could model using Multivariate NNGP as disussed previously
with SVCs, works well when h < 5.

• But what about when h is large (e.g,. 10, 100)?
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Spatial Factor Model

• Approximates the dependence between multivariate
(spatially-dependent) outcomes through a linear combination
of a (much) lower-dimensional set of spatial factors

• We represent the h × 1 vector w∗(si) as a linear combination
of latent spatial factors and factor loadings:

w∗(si) = Λw(si)

• Λ is an h × q loadings matrix and w(si) is a q × 1 vector of
realizations from q independent spatial GPs

• In traditional factor analysis, w(si) are realizations from
independent standard normal random variables.
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Spatial Factor Model

• Choosing q << h leads to substantial computational
reductions.

• Simple to code: just sample from q independent GPs as with
basic univariate models.

• Yields a non-separable multivariate cross-covariance function
between location si and si ′ :
cov(w∗(si), w∗(si ′)) = ∑q

k=1 ρk(si , si ′ , ϕk)λkλ⊤
k

• Can simply replace the q full GPs with their corresponding
NNGPs to yield a spatial factor NNGP model

• Identifiability constraints on Λ: fix upper triangle to 0 and
diagonal to 1. See Ren and Banerjee (2013) Biometrics
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Priors

• Standard normal priors for the lower triangle of Λ
• We like to model response-specific regression coefficients βj

hierarchically. For each r = 1, . . . , p covariate, we model βj,r

following

βj,r ∼ N(µβr , τ2
βr )

• Gaussian hyperpriors for µβr and IG or half-Cauchy priors for
τ2

βr

• Independent uniform priors for spatial decay parameters ϕ
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Gibbs sampler

• Full conditionals are in closed form for all parameters except
ϕ for Gaussian and Binomial responses.

• Update ϕ with an Adaptive Metroplis-within-Gibbs algorithm
(Roberts and Rosenthal 2009)

• See Taylor-Rodriguez et al. 2019 for Gaussian sampler,
spOccupancy website for Pólya-Gamma sampler
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Why we like spatial factor models

• Simple to code (don’t need to deal with cross-covariance
matrices).

• Relatively fast and efficient (well, at least for Gaussian and
Binomial).

• Factors and factor loadings can be used for model-based
ordination.

• Straightforward extensions to spatially-varying coefficient
models.
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Example: bird communities across the continental US
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(A) Eastern Forest Mean Richness
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(B) Eastern Forest SD Richness
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(C) Grassland Mean Richness
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Example: bird communities across the continental US

Visualization of the first spatial factor and corresponding factor
loadings
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Some downsides to spatial factor models

• Convergence assessment is not always straightforward
• Sensitivity to initial values
• Order of the first q responses has important implications for

convergence and mixing.
• Assume a multivariate stochastic process can be represented

as a linear combination of independent univariate processes
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Software

• spOccupancy: spatial NNGP and non-spatial factor models
for binary data

• spAbundance: Gaussian, Poisson, and NB spatial NNGP and
non-spatial factor models.

• boral: many distributions for non-spatial and spatial factor
models (Hui 2015 MEE ; spatial use full GPs fit in JAGS)

• Hmsc: spatial models using NNGPs (Tikhonov et al. 2019;
MEE )

• spBFA: a variety of spatial models with some nifty priors
(Berchuck et al. 2022 Bayesian Analysis)
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Exercise

Modeling the distribution of 10 tree species across Vermont
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