Application of Spatially-Varying Coefficient Models

Jeffrey Doser¹ & Andrew Finley² May 15, 2023

¹Department of Integrative Biology, Michigan State University.
²Department of Forestry, Michigan State University.

- Extension of spatial regression approaches that allow regression coefficients to vary across space, and not just the intercept
- SVC models are random slopes models, with spatial structure given to the random slopes

SVC GLMMs

$$\begin{aligned} y(\mathbf{s}_i) &\sim f(\mu(\mathbf{s}_i), \tau) \\ \mu(\mathbf{s}_i) &= g^{-1}(\eta(\mathbf{s}_i)) = \mathbf{x}(\mathbf{s}_i)^\top \tilde{\boldsymbol{\beta}}(\mathbf{s}_i) \\ \tilde{\boldsymbol{\beta}}_r(\mathbf{s}_i) &= \boldsymbol{\beta}_r + w_r(\mathbf{s}_i) \text{ for each } r = 1, \dots, p \end{aligned}$$

- We can model $\mathbf{w}(\mathbf{s}_i)$ using a GP, predictive process, or NNGP
- We can envision modeling w(s_i) in two ways:
 - 1. Multivariate NNGP (see previous forest biomass example)
 - 2. Independent NNGPs
- Here we focus on the latter
- Pros and cons to both approaches, similar to correlations between random slopes and intercepts in mixed models

- Improved predictive performance
- Tremendous flexibility to accommodate spatial variability in effects
- Hypothesis testing and generation
- Accommodate highly non-linear relationships
- Model spatial variability in trends over time

Improved predictive performance

Observed biomass

Gray Catbird occurrence trend across the eastern US from 2000-2019 $% \left({{\left[{{{\rm{C}}} \right]}_{{\rm{C}}}}_{{\rm{C}}}} \right)$

Example: Effect of max temperature on Bobolink occurrence

- spBayes: univariate Gaussian SVC with full GPs
- spOccupancy: univariate Binomial SVC with NNGPs (multivariate on its way)
- varycoef: maximum likelihood Gaussian SVCs (Dambon et al. 2021 Spatial Stats.)
- sdmTMB: penalized likelihood and Bayesian SVC GLMMs (Anderson et al. 2022 *bioRxiv*)

Exercise: 10-year occurrence trend of Wood Thrush

- Data come from USGS North American Breeding Bird Survey
- We desire to account for observational biases in detection of the birds (i.e., false negatives).
- Add on an additional observational layer to our hierarchical model

Exercise: Process model

Let z_t(s_i) denote the true presence (1) or absence (0) of the species at site i = 1,..., 500 during year t = 1,..., 10.

Exercise: Process model

- Let z_t(s_i) denote the true presence (1) or absence (0) of the species at site i = 1,..., 500 during year t = 1,..., 10.
- If the bird was detected at a site and year, we know
 z_t(s_i) = 1. If not, it might be there and we just missed it during the surveys.

Exercise: Process model

- Let z_t(s_i) denote the true presence (1) or absence (0) of the species at site i = 1,..., 500 during year t = 1,..., 10.
- If the bird was detected at a site and year, we know
 z_t(s_i) = 1. If not, it might be there and we just missed it during the surveys.
- We model z_t(s_i) just as before with a Bernoulli GLM, with a SVC for trend

 $z_t(\mathbf{s}_i) \sim \text{Bernoulli}(\psi_t(\mathbf{s}_i))$ $\text{logit}(\psi_t(\mathbf{s}_i)) = \tilde{\beta}_0(\mathbf{s}_i) + \tilde{\beta}_1(\mathbf{s}_i) \cdot \text{YEAR}_t$

*β*₀(s_i) and *β*₁(s_i) are modeled as independent SVCs with NNGPs

Exercise: Observation model

- Let y_{t,k}(s_i) denote the observed detection (1) or nondetection
 (0) of the bird at site *i* during year *t* and survey k = 1,...,5.
- We model y_{t,k}(s_i) conditional on the true presence/absence of the species z_t(s_i)

$$y_{t,k}(\mathbf{s}_i) \mid z_t(\mathbf{s}_i) \sim \text{Bernoulli}(p_{i,t,k} \cdot z_t(\mathbf{s}_i))$$
$$\text{logit}(p_{i,t,k}) = \alpha_{0,t} + \alpha_1 \cdot \text{DAY}_{i,t,k} + \alpha_2 \cdot \text{DAY}_{i,t,k}^2$$

 A key assumption for identifiability is that z_t(s_i) does not change across the 5 replicate surveys at site i during year t.