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Consider again the spatially-varying intercept model for generic
location s

y(s) = x(s)⊤β + w(s) + ϵ(s), s ∈ D ⊆ Rd ,

where

y(s) is the outcome,

x(s) is p × 1 set of predictors including an intercept,

β is a vector of p regression parameters,

w(s) is a spatial random effect,

ϵ(s) is the independent noise process with variance τ2.
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Likelihood from (full rank) GP models

• Assuming w(s) ∼ GP(0, Kθ(·, ·)) implies that for a set of n
locations1

w = (w(s1), w(s2), . . . , w(sn))⊤ ∼ MVN(0, Kθ)

• Estimating process parameters from the likelihood involves:

p(w) ∝ −1
2 log det(Kθ) − 1

2w⊤K−1
θ w

• Bayesian inference: priors on θ and many Markov chain
Monte Carlo (MCMC) iterations

1Kθ(·, ·) is any valid spatial covariance function, e.g., σ2R(·, ·; ϕ), with
θ =

(
σ2, ϕ

)
.
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Computation issues

• Storage: n2 pairwise distances to compute Kθ

• Kθ is dense; Need to solve Kθx = b and need det(Kθ)

• This is best achieved using chol(Kθ) = LDL⊤

• Complexity: roughly O(n3) flops

Computationally infeasible for large datasets
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Burgeoning literature on spatial big data

• Low-rank models: (Wahba, 1990; Higdon, 2002; Rasmussen and
Williams, 2006; Cressie and Johannesson, 2008; Banerjee et al.,
2008, 2010; Gramacy and Lee, 2008; Finley et al., 2009; Lemos and
Sansó, 2009; Sang et al., 2011; Sang and Huang, 2012; Guhaniyogi
et al., 2011; Katzfuss and Hammerling, 2017)

• Spectral approximations and composite likelihoods: (Fuentes, 2007;
Paciorek, 2007; Eidsvik et al., 2014)

• Multi-resolution approaches: (Nychka et al., 2015; Johannesson et
al., 2007; Katzfuss, 2017; Guhaniyogi and Sanso, 2020)

• Sparsity: (Solve Ax = b by (i) sparse A, or (ii) sparse A−1)
1. Covariance tapering (Furrer et al., 2006; Du et al., 2009;

Kaufman et al., 2008; Stein, 2013; Shaby and Ruppert, 2012)
2. GMRFs to GPs: INLA (Rue et al., 2009; Lindgren et al., 2011)
3. LAGP Gramacy et al., 2014; Gramacy and Apley, 2015)
4. Nearest-neighbor Gaussian Process (NNGP) models (Datta et

al., 2016a,c,b; Finley et al., 2019a) builds on Vecchia (1988). 4



Reduced (Low) rank models

• Kθ ≈ JθK∗
θJ⊤

θ + Dθ

• Jθ is n × r matrix of spatial basis functions, r << n

• K∗
θ is r × r spatial covariance matrix

• Dθ is either diagonal or sparse

• Examples: Kernel projections, Splines, Predictive process,
FRK, spectral basis . . .

• Computations exploit above structure: roughly
O(nr2) << O(n3) flops
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Reduced (Low) rank models (cont’d)

Low-rank models: hierarchical approach
N(w∗ | 0, K∗

θ) × N(w | Jθw∗, D)

• w is n × 1 and n is large
• w∗ is r × 1, where r << n, defined over a user-defined set of

locations, or knots, S ∗ = {s∗
1 , s∗

2 , . . . , s∗
r }.

• Jθ is n × r is a matrix of “basis” functions
• D is n × n, but easy to invert (e.g., diagonal)
• Derive var(w) (or var(w∗ | y)) in alternate ways to obtain

(JθK∗
θJ⊤

θ + D)−1 = D−1 − D−1Jθ(K∗−1
θ + J⊤

θ D−1Jθ)−1J⊤
θ D−1 .

This is the famous Sherman-Woodbury-Morrison formula.

See, e.g., Finley et al. (2017) for implantation details and software for
the Gaussian predictive process (GPP) model. 6



Simulation experiment

• 2500 locations on a unit square

• y(s) = β0 + β1x(s) + w(s) + ϵ(s)

• Single covariate x(s) generated as iid N(0, 1)

• Spatial effects generated from GP(0, σ2R(·, · | ϕ))

• R(·, · | ϕ) is exponential correlation function with decay ϕ

• Candidate models: Full GP and Gaussian Predictive Process
(GPP) with 64 knots
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Oversmoothing due to reduced-rank models

True w Full GP GPP 64 knots
Figure: Comparing full GP vs low-rank GPP with 2500 locations. Figure
(c) exhibits oversmoothing by a low-rank process (predictive process with
64 knots)

See Stein (2014) for very good reasons NOT to use reduced-rank
spatial models. 8



Low rank Gaussian Predictive Process

Pros
• Proper Gaussian process
• Allows for coherent spatial interpolation at arbitrary resolution
• Can be used as prior for spatial random effects in any

hierarchical setup for spatial data
• Computationally tractable
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Low rank Gaussian Predictive Process

Cons

True w Full GP PP 64 knots
Figure: Comparing full GP vs low-rank GP with 2500 locations

• Low rank models, like the GPP, tend to oversmooth
• Increasing the number of knots can fix this but will lead to

heavy computation
9



Sparse matrices

• Idea: Use a sparse matrix instead of a low rank matrix to
approximate the dense full GP covariance matrix

• Goals:
• Scalability: Both in terms of storage and computing inverse

and determinant

• Closely approximate full GP inference

• Proper Gaussian process model like the GPP
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Cholesky factors

• Write a joint density p(w) = p(w1, w2, . . . , wn) as:

p(w1)p(w2 | w1)p(w3 | w1, w2) · · · p(wn | w1, w2, . . . , wn−1)

• For Gaussian distribution w ∼ N(0, Kθ) this ⇒

w1 = 0 + η1;
w2 = a21w1 + η2;
· · · · · · · · ·
wn = an1w1 + an2w2 + · · · + an,n−1wn−1 + ηn;
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Cholesky factors

• Write a joint density p(w) = p(w1, w2, . . . , wn) as:

p(w1)p(w2 | w1)p(w3 | w1, w2) · · · p(wn | w1, w2, . . . , wn−1)

• For Gaussian distribution w ∼ N(0, Kθ) this ⇒

w1

w2

w3
...

wn


=



0 0 0 . . . 0 0
a21 0 0 . . . 0 0
a31 a32 0 . . . 0 0
... ... ... ... ... ...

an1 an2 an3 . . . an,n−1 0





w1

w2

w3
...

wn


+



η1

η2

η3
...

ηn


=⇒ w = Aw + η; η ∼ N(0, D).
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Cholesky factors

• Write a joint density p(w) = p(w1, w2, . . . , wn) as:
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w3
...

wn
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=



0 0 0 . . . 0 0
a21 0 0 . . . 0 0
a31 a32 0 . . . 0 0
... ... ... ... ... ...

an1 an2 an3 . . . an,n−1 0





w1

w2

w3
...

wn


+



η1

η2

η3
...

ηn


=⇒ w = Aw + η; η ∼ N(0, D).

• Cholesky factorization:

Kθ = (I − A)−1D(I − A)−⊤, where D = diag(var{wi | w{j<i}})
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Cholesky factors

• For Gaussian distribution N(w | 0, Kθ),

Kθ = (I − A)−1D(I − A)−⊤ ; D = diag(var{wi | w{j<i}})

• If L is from chol(Kθ) = LDL⊤, then L−1 = I − A.

• aij ’s obtained from n − 1 linear systems by comparing
coefficients of wj ’s in∑

j<i
aijwj = E[wi | w{j<i}] i = 2, . . . , n

• Non-zero elements of A and D are computed:
D[1,1] = K[1,1] and first row of A is zero.
for(i in 1:(n-1)) {

A[i+1,1:i] = solve(K[1:i,1:i], K[1:i,i+1])

D[i+1,i+1] = K[i+1,i+1] - dot(K[i+1,1:i],A[i+1,1:i])

} 12



Cholesky Factors and Directed Acyclic Graphs (DAGs)
Full dependency graph

1

2

3

4

5

67

• Number of non-zero entries (sparsity) of A equals number of
arrows in the graph

• In particular: Sparsity of the i th row of A is same as the
number of arrows towards i in the DAG
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Introducing sparsity via graphical models
Full dependency graph

1

2

3

4

5

67

p(y1)p(y2 | y1)p(y3 | y1, y2)p(y4 | y1, y2, y3)
× p(y5 | y1, y2, y3, y4)p(y6 | y1, y2, . . . , y5)p(y7 | y1, y2, . . . , y6) .

14



Introducing sparsity via graphical models
3−Nearest neighbor dependency graph

1

2

3

4

5

67

p(y1)p(y2 | y1)p(y3 | y1, y2)p(y4 | y1, y2, y3)
p(y5 |��y1, y2, y3, y4)p(y6 | y1,��y2,��y3, y4, y5)p(y7 | y1, y2,��y3,��y4,��y5, y6)
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Introducing sparsity via graphical models
3−Nearest neighbor dependency graph

1

2

3

4

5

67

• Create a sparse DAG by keeping at most m arrows pointing to
each node

• Set aij = 0 for all i , j which has no arrow between them
• Fixing aij = 0 introduces conditional independence and wj

drops out from the conditional set in p(wi | {wk : k < i})
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Introducing sparsity via graphical models
3−Nearest neighbor dependency graph

1

2

3

4

5

67

• N(i) denote neighbor set of i , i.e., the set of nodes from
which there are arrows to i

• aij = 0 for j /∈ N(i) and nonzero aij ’s obtained by solving:

E[wi | wN(i)] =
∑

j∈N(i)
aijwj

• The above linear system is only m × m 15



• Non-zero elements of sparse A and D are computed:

D[1,1] = K[1,1] and first row of A is zero.
for(i in 1:(n-1)) {

Pa = N[i+1] # neighbors of i+1

A[i+1,Pa] = solve(K[Pa,Pa], K[i+1,Pa])

D[i+1,i+1] = K[i+1,i+1] - dot(K[i+1,Pa],A[i+1,Pa])

}

• We need to solve n − 1 linear systems of size at most m × m.
• We effectively model a (sparse) Cholesky factor instead of

computing it.
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Choosing neighbor sets

Matern Covariance Function:

K (si , sj) = 1
2ν−1Γ(ν)(||si − sj ||ϕ)νKν(||si − sj ||ϕ); ϕ > 0, ν > 0,
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Choosing neighbor sets

• Spatial covariance functions decay with distance

• Vecchia (1988): N(si) = m−nearest neighbors of si in
s1, s2, . . . , si−1

• Nearest points have highest correlations
• Theory: “Screening effect” – Stein, 2002

• We use Vecchia’s choice of m-nearest neighbor

• Other choices proposed in Stein et al. (2004); Gramacy and
Apley (2015); Guinness (2018) can also be used, with
additional discussion in Finley et al. (2019) and Katzfuzz and
Guinness (2021)
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Nearest neighbors
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Sparse precision matrices

• The neighbor sets and the covariance function K (·, ·) define a
sparse Cholesky factor A

• N(w | 0, Kθ) ≈ N(w | 0, K̃θ) ; K̃−1
θ = (I − A)⊤D−1(I − A)

I − A D−1 K̃−1
θ

• det(K̃θ) = ∏n
i=1 Di ,

• K̃−1
θ is sparse with O(nm2) entries

Explore some A and K̃−1
θ sparsity patterns https://github.com/finleya/NNGP_LDL 20

https://github.com/finleya/NNGP_LDL


Extension to a Process

• We have defined w ∼ N(0, K̃θ) over the set of data locations
S = {s1, s2, . . . , sn}

• For s /∈ S, define N(s) as set of m-nearest neighbors of s in S

• Define w(s) = ∑
i :si ∈N(s) ai(s)w(si) + η(s) where

η(s) ind∼ N(0, d(s))
• ai(s) and d(s) are once again obtained by solving m × m

system

• Well-defined GP over entire domain
• Nearest Neighbor GP (NNGP) – Datta et al., JASA, (2016)
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Hierarchical spatial regression with NNGP

Spatial linear model
y(s) = x(s)⊤β + w(s) + ϵ(s)

• w(s) modeled as NNGP derived from a GP(0, (·, ·, | σ2, ϕ))

• ϵ(s) iid∼ N(0, τ2) contributes to the nugget

• Priors for the parameters β, σ2, τ2 and ϕ

• Only difference from a full GP model is the NNGP prior w(s)
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Hierarchical spatial regression with NNGP

Full Bayesian Model

N(y | Xβ + w, τ2I) × N(w | 0, K̃θ) × N(β | µβ, Vβ)
× IG(τ2 | aτ , bτ ) × IG(σ2 | aσ, bσ) × Unif (ϕ | aϕ, bϕ)

Gibbs sampler:

• Full conditionals for β, τ2, σ2 and w(si)’s
• Metropolis step for updating ϕ

• Posterior predictive distribution at any location using
composition sampling
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Choosing m

• Run NNGP in parallel for few values of m

• Choose m based on model evaluation metrics

• Our results suggested that typically m ≈ 20 yielded excellent
approximations to the full GP
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Storage and computation

• Storage:
• Never needs to store n × n distance matrix
• Stores smaller m × m matrices
• Total storage requirements O(nm2)

• Computation:
• Only involves inverting small m × m matrices
• Total flop count per iteration of Gibbs sampler is O(nm3)

• Since m ≪ n, NNGP offers great scalability for large datasets
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Simulation experiment

• 2500 locations on a unit square

• y(s) = β0 + β1x(s) + w(s) + ϵ(s)

• Single covariate x(s) generated as iid N(0, 1)

• Spatial effects generated from GP(0, σ2R(·, · | ϕ))

• R(·, · | ϕ) is exponential correlation function with decay ϕ

• Candidate models: Full GP, Gaussian Predictive Process
(GPP) with 64 knots and NNGP
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Fitted Surfaces

True w Full GP GPP 64 knots

NNGP, m = 10 NNGP, m = 20

Figure: Univariate synthetic data analysis 27



Parameter estimates

NNGP Predictive Process Full
True m = 10 m = 20 64 knots Gaussian Process

β0 1 1.00 (0.62, 1.31) 1.03 (0.65, 1.34) 1.30 (0.54, 2.03) 1.03 (0.69, 1.34)
β1 5 5.01 (4.99, 5.03) 5.01 (4.99, 5.03) 5.03 (4.99, 5.06) 5.01 (4.99, 5.03)
σ2 1 0.96 (0.78, 1.23) 0.94 (0.77, 1.20) 1.29 (0.96, 2.00) 0.94 (0.76, 1.23)
τ2 0.1 0.10 (0.08, 0.13) 0.10 (0.08, 0.13) 0.08 (0.04, 0.13) 0.10 (0.08, 0.12)
ϕ 12 12.93 (9.70, 16.77) 13.36 (9.99, 17.15) 5.61 (3.48, 8.09) 13.52 (9.92, 17.50)
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Model evaluation

NNGP Predictive Process Full
m = 10 m = 20 64 knots Gaussian Process

DIC score 2390 2377 13678 2364
RMSPE 1.2 1.2 1.68 1.2

Run time (Minutes) 14.40 46.47 43.36 560.31

• NNGP performs at par with Full GP
• GPP oversmooths and performs much worse both in terms of

parameter estimation and model comparison
• NNGP yields huge computational gains

29



Multvariate spatial linear model

• Spatial linear model for q-variate spatial data:
yi(s) = x⊤

i (s)βi + wi(s) + ϵi(s) for i = 1, 2, . . . , q

• ϵ(s) = (ϵ1(s), ϵ2(s), . . . , ϵq(s))⊤ ∼ N(0, E ) where E is the
q × q noise matrix

• w(s) = (w1(s), w2(s), . . . , wq(s))⊤ is modeled as a q-variate
Gaussian process
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Multivariate GPs

• Cov(w(si), w(sj)) = K (si , sj | θ) – a q × q cross-covariance
matrix

• Choices for the function K (·, · | θ)
• Multivariate Matérn
• Linear model of co-regionalization

• For data observed at n locations, all choices lead to a dense
nq × nq matrix Kθ = Cov(w(s1), w(s2), . . . , w(sn))

• Not scalable when nq is large
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Multivariate NNGPs

• Cholesky factor approach similar to the univariate case

w(s1)
w(s2)
w(s3)

...
w(sn)


=



0 0 0 . . . 0 0
A21 0 0 . . . 0 0
A31 A32 0 . . . 0 0

... ... ... ... ... ...
An1 An2 An3 . . . An,n−1 0





w(s1)
w(s2)
w(s3)

...
w(sn)


+



η(s1)
η(s2)
η(s3)

...
η(sn)


=⇒ w = Aw + η; η ∼ N(0, D), D = diag(D1, D2, . . . , Dn).

Only differences:

• w(si) and η(si)’s are q × 1 vectors and Aij and Di ’s are q × q
matrix

• we must solve n − 1 at most mq × mq linear systems
(challenging when q gets large, e.g., q > 5).
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U.S. Forest biomass data

Observed biomass NDVI

• Forest biomass data from measurements at 114,371 plots

• NDVI (greenness) is used to predict forest biomass
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U.S. Forest biomass data

Non Spatial Model
Biomass = β0 + β1NDVI + error , β̂0 = 1.043, β̂1 = 0.0093

Residuals Variogram of residuals

Strong spatial pattern among residuals

34



Forest biomass dataset

• n ≈ 105 (Forest Biomass) ⇒ full GP requires storage ≈ 40Gb
and time ≈ 140 hrs per iteration.

• We use a spatially varying coefficients NNGP model

Model

• Biomass(s) = β0(s) + β1(s)NDVI(s) + ϵ(s)

• w(s) = (β0(s), β1(s))⊤ ∼ Bivariate NNGP(0, K̃ (·, · | θ)),
m = 5

• Time ≈ 6 seconds per iteration

• Full inferential output: 41 hours (25000 MCMC iterations)
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Forest biomass data

Observed biomass Fitted biomass

β0(s) βNDVI(s)
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Reducing parameter dimensionality

• The Gibbs sampler algorithm for the NNGP updates
w(s1), w(s2), . . . , w(sn) sequentially

• Dimension of the MCMC for this sequential algorithm is O(n)

• If the number of data locations n is very large, this
high-dimensional MCMC can converge slowly

• Although each iteration for the NNGP model will be very fast,
many more MCMC iterations may be required
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Collapsed NNGP

• Same model:

y(s) = x(s)⊤β + w(s) + ϵ(s)
w(s) ∼ NNGP(0, K (·, · | θ))

ϵ(s) iid∼ N(0, τ2)

• Latent model: y ∼ N(Xβ + w, τ2I); w ∼ N(0, K̃θ)

• Collapsed model: Marginalizing out w, y ∼ N(Xβ, τ2I + K̃θ)
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Collapsed NNGP

y ∼ N(Xβ, τ2I + K̃θ)

• Only involves few parameters β, τ2 and θ =
(
σ2, ϕ

)
• Drastically reduces the MCMC dimensionality
• Gibbs sampler updates are based on sparse linear systems

using K̃−1
θ (e.g., use CHOLMOD)

• Improved MCMC convergence
• Can recover posterior distribution of w | y
• Complexity of the algorithm depends on the design of the

data locations and is not guaranteed to be O(n)

39



Response NNGP

• w(s) ∼ GP(0, K (·, · | θ)) ⇒ y(s) ∼ GP(x(s)⊤β, Σ(·, · | τ2, θ))
• Σ(si , sj) = K (si , sj | θ) + τ2 δ(si = sj) (δ is Kronecker delta)
• We can directly derive the NNGP covariance function

corresponding to Σ(·, ·)
• Σ̃ is the NNGP covariance matrix for the n locations
• Response model: y ∼ N(Xβ, Σ̃)
• Storage and computations are guaranteed to be O(n)
• Low dimensional MCMC ⇒ Improved convergence
• Cannot coherently recover w | y
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Conjugate NNGP

• Full GP model: y ∼ N(Xβ, Σ) where Σ = σ2M
• M = R(ϕ) + αI
• α = τ2/σ2 is the ratio of the noise to signal variance
• Σ̃ = σ2M̃ where M̃ is the NNGP approximation for M

• If ϕ and α are known, M, and hence M̃, are known matrices
• The model becomes a standard Bayesian linear model
• Assume a Normal Inverse Gamma prior for (β, σ2)⊤

• (β, σ2)⊤ ∼ NIG(µβ, Vβ, aσ, bσ), i.e., β | σ2 ∼ N(µβ, σ2Vβ)
and σ2 ∼ IG(aσ, bσ)

• Exact posterior distributions of β and σ2 are available

Can handle n in the 100s of millions!

41



Conjugate NNGP

• Full GP model: y ∼ N(Xβ, Σ) where Σ = σ2M
• M = R(ϕ) + αI
• α = τ2/σ2 is the ratio of the noise to signal variance
• Σ̃ = σ2M̃ where M̃ is the NNGP approximation for M

• If ϕ and α are known, M, and hence M̃, are known matrices
• The model becomes a standard Bayesian linear model
• Assume a Normal Inverse Gamma prior for (β, σ2)⊤

• (β, σ2)⊤ ∼ NIG(µβ, Vβ, aσ, bσ), i.e., β | σ2 ∼ N(µβ, σ2Vβ)
and σ2 ∼ IG(aσ, bσ)

• Exact posterior distributions of β and σ2 are available

Can handle n in the 100s of millions!

41



Comparison of NNGP models

Latent Collapsed Response Conjugate
O(n) time Yes No Yes Yes

Recovery of w | y Yes Yes No Yes
Parameter High Low Low Low

dimensionality
Inference on θ Yes Yes Yes Partially
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Comparison of NNGP models

Figure: (a) Runtime for 1000 MCMC iterations for n = 100000 and
different number of cores. (b) Runtime for 1000 MCMC iterations using
40 cores and n from 1000 to 5 million. Model type (latent and response)
refers to different NNGP parameterizations, see Finley et al. 2022.
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Summary of Nearest Neighbor Gaussian Processes

• Sparsity inducing Gaussian process
• Constructed from sparse Cholesky factors based on m nearest

neighbors
• Scalability in storage, inverse, and determinant of NNGP

covariance matrix are all O(n)
• Proper Gaussian process, allows for inference using hierarchical

spatial models and predictions at arbitrary spatial resolution
• Closely approximates full GP inference, does not oversmooth

like low rank models
• Extension to multivariate NNGP
• Collapsed and response NNGP models with improved MCMC

convergence
• R packages spNNGP (Finley et al. 2022) and spOccupancy

(Doser et al., 2022) on CRAN
44
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