Nearest Neighbor Gaussian Processes for

Large Spatial Data

Andrew Finley! & Jeffrey Doser?
May 15, 2023

1Department of Forestry, Michigan State University.

2Department of Integrative Biology, Michigan State University.

Consider again the spatially-varying intercept model for generic
location s

y(s) =x(s)" B+ w(s) +¢(s), s€ZCRY,
where
y(s) is the outcome,
x(s) is p x 1 set of predictors including an intercept,
B is a vector of p regression parameters,
w(s) is a spatial random effect,

€(s) is the independent noise process with variance 72.

Likelihood from (full rank) GP models

= Assuming w(s) ~ GP(0, Ky(-,-)) implies that for a set of n

locations!

w = (w(s1), w(sz), ..., w(sn))" ~ MVN(0, Kp)
= Estimating process parameters from the likelihood involves:

1 1
plw) o - log@lKe) - bw R

= Bayesian inference: priors on 8 and many Markov chain
Monte Carlo (MCMC) iterations

YKy (-,-) is any valid spatial covariance function, e.g., °R(, -; ¢), with

6= (0% 0).

Computation issues

Storage: n? pairwise distances to compute Ky
Ky is dense; Need to solve Kyx = b and need det(Ky)
This is best achieved using chol(Ky) = LDLT

Complexity: roughly O(n?) flops

Computationally infeasible for large datasets

Burgeoning literature on spatial big data

= Low-rank models: (Wahba, 1990; Higdon, 2002; Rasmussen and
Williams, 2006; Cressie and Johannesson, 2008; Banerjee et al.,
2008, 2010; Gramacy and Lee, 2008; Finley et al., 2009; Lemos and
Sansd, 2009; Sang et al., 2011; Sang and Huang, 2012; Guhaniyogi
et al., 2011; Katzfuss and Hammerling, 2017)

= Spectral approximations and composite likelihoods: (Fuentes, 2007;
Paciorek, 2007; Eidsvik et al., 2014)

= Multi-resolution approaches: (Nychka et al., 2015; Johannesson et
al., 2007; Katzfuss, 2017; Guhaniyogi and Sanso, 2020)
= Sparsity: (Solve Ax = b by (i) sparse A, or (ii) sparse A~1)
1. Covariance tapering (Furrer et al., 2006; Du et al., 20009;
Kaufman et al., 2008; Stein, 2013; Shaby and Ruppert, 2012)
2. GMRFs to GPs: INLA (Rue et al., 2009; Lindgren et al., 2011)
3. LAGP Gramacy et al., 2014; Gramacy and Apley, 2015)
4. Nearest-neighbor Gaussian Process (NNGP) models (Datta et
al., 2016a,c,b; Finley et al., 2019a) builds on Vecchia (1988).

Reduced (Low) rank models

= Ky~ JyK3J, + Dy

= Jy is n X r matrix of spatial basis functions, r << n
= Kj is r x r spatial covariance matrix

= Dy is either diagonal or sparse

= Examples: Kernel projections, Splines, Predictive process,
FRK, spectral basis ...

= Computations exploit above structure: roughly
O(nr?) << O(n3) flops

Reduced (Low) rank models (cont’d)

Low-rank models: hierarchical approach
N(w* |0,Kp) x N(w|Jyw™, D)

= wisnx1andnis large

*

= w"isr x 1, where r << n, defined over a user-defined set of

locations, or knots, .* = {s},s},...,si}.
= Jyis n X ris a matrix of “basis” functions
= D is nx n, but easy to invert (e.g., diagonal)
= Derive var(w) (or var(w*|y)) in alternate ways to obtain
(JoKjJ, +D) 1 =D ' —D (K, +J D) MY D

This is the famous Sherman-Woodbury-Morrison formula.

See, e.g., Finley et al. (2017) for implantation details and software for

the Gaussian predictive process (GPP) model.

Simulation experiment

= 2500 locations on a unit square

= y(s) = Po+ Six(s) + w(s) + €(s)

= Single covariate x(s) generated as iid N(0, 1)

= Spatial effects generated from GP(0,02R(-, | ¢))

= R(-,-|¢) is exponential correlation function with decay ¢

= Candidate models: Full GP and Gaussian Predictive Process
(GPP) with 64 knots

Oversmoothing due to reduced-rank models

1.0
e) e T

0.8 AT - Z 0.8 B 2 0

b‘(’ 1 e L | ’ 2 !

o 5 '42' LY 0 . 0
S 0.4 - . S o0.a

"* o " s 1 .
0.2 3 0.2
g‘ R - . &

L B
0.0 0.2 0.4 0.6 1. 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Basting Basting Easting

True w Full GP GPP 64 knots
Figure: Comparing full GP vs low-rank GPP with 2500 locations. Figure

(c) exhibits oversmoothing by a low-rank process (predictive process with
64 knots)

See Stein (2014) for very good reasons NOT to use reduced-rank
spatial models. 3

Low rank Gaussian Predictive Process

Pros
= Proper Gaussian process
= Allows for coherent spatial interpolation at arbitrary resolution

= Can be used as prior for spatial random effects in any
hierarchical setup for spatial data

= Computationally tractable

Low rank Gaussian Predictive Process

Cons

;
v

True w Full GP PP 64 knots
Figure: Comparing full GP vs low-rank GP with 2500 locations

= Low rank models, like the GPP, tend to oversmooth

= Increasing the number of knots can fix this but will lead to
heavy computation

Sparse matrices

= |dea: Use a sparse matrix instead of a low rank matrix to
approximate the dense full GP covariance matrix

= Goals:
= Scalability: Both in terms of storage and computing inverse
and determinant

= Closely approximate full GP inference

= Proper Gaussian process model like the GPP

10

Cholesky factors

= Write a joint density p(w) = p(w1, wa, ..., w,) as:

p(wi)p(wa [wi)p(ws | wi, wa) - - p(wn | wi, wa, ..., wy 1)
= For Gaussian distribution w ~ N(0, Ky) this =

wy = 0+ ny;

Wp = axiwi + 12,

Wp = aniWwi + apWo + -+ + appn—1Wp—1 + 7n;

11

Cholesky factors

= Write a joint density p(w) = p(w1, wa, ..., w,) as:

p(wi)p(wo | wi)p(ws | wi, wo) -+ p(w, | wi, wa, ..., Ws_1)

= For Gaussian distribution w ~ N(0, Ky) this =

w1 0 0 0 coo 0 0_ _W1_ _771_

%) ani 0 0 000 0 0 wo 2

W3 | = |a31 asz2 0 ce 0 0 W3 | + |73
L Wh | 1dn1 dn2 an3 ... dnn-1 0] [wn] L7n

= w=Aw+17n; n~ N(0,D).

11

Cholesky factors

= Write a joint density p(w) = p(wy, wa, ..., w,) as:

p(wi)p(wa | wa)p(ws | wi, wa) - p(wn|wi,wo, ..., wh_1)

= For Gaussian distribution w ~ N(0, Ky) this =

Wi 0 0 0 000 0 0 wi m
1%] ani 0 0 000 0 0 1% 2
W3 | = |a31 asz2 0 e 0 0 w3 | + |73
L Wh] 1dnl dn2 dn3 ... dnn-1 0_ | Whn | L7n

—w=Aw+7n; n~ N(0,D).
= Cholesky factorization:
Kg=(1-A)"ID(1-A)"", where D = diag(var{w; | Wij<i}})

11

Cholesky factors

= For Gaussian distribution N(w |0, Kp),
Kg=(1—-A)"D(I-—A)"T; D =diag(var{w;| W{j<i}})
= If L is from chol(Ky) = LDL', then L™t =1—A.

= aj's obtained from n — 1 linear systems by comparing
coefficients of w;'s in
ZaUWJ = E[W,"W{j<,'}] i=2,...,n
J<i
= Non-zero elements of A and D are computed:
D[1,1] = K[1,1] and first row of A is zero.
for(i in 1:(n-1)) {
A[i+1,1:i] = solve(K[1:i,1:i], K[1:i,i+1])
D[i+1,i+1] K[i+1,i+1] - dot(K[i+1,1:i],A[i+1,1:i])

} 12

Cholesky Factors and Directed Acyclic Graphs (DAGs)

~———— |

0\ 7=

= Number of non-zero entries (sparsity) of A equals number of
arrows in the graph
= In particular: Sparsity of the i*" row of A is same as the

number of arrows towards i in the DAG
13

Introducing sparsity via graphical models

p(y1)p(y2 | y1)p(y3 | y1. y2)p(va | y1, 2, ¥3)
X p(ys | y1, 2, ¥3,¥a)P(¥6 | y1. Y2, - - -, ys)p(y7 [y, y2, .-, ¥6) -

14

Introducing sparsity via graphical models

p(y1)p(y2 | y1)p(y3 | y1, y2)p(ya | y1, y2, y3)
p(ys | 1, y2, ¥3, ¥a)P(¥6 | y1, ¥2, ¥5, Ya. ¥5)P(y7 | y1, y2, ¥4, V4, ¥5' Ye)

14

Introducing sparsity via graphical models

= Create a sparse DAG by keeping at most m arrows pointing to
each node

= Set a; = 0 for all i,j which has no arrow between them

= Fixing a; = 0 introduces conditional independence and w;
drops out from the conditional set in p(w; | {wk : k < i})

5

Introducing sparsity via graphical models

~———— |

0\ ye

= N(i) denote neighbor set of i, i.e., the set of nodes from
which there are arrows to i
= a; =0 for j ¢ N(i) and nonzero a;'s obtained by solving:
Elwi |wnhl = D ayw;
Jjen(i)

= The above linear system is only m x m 1

= Non-zero elements of sparse A and D are computed:

D[1,1] = K[1,1] and first row of A is zero.
for(i in 1:(n-1)) {
Pa = N[i+1] # neighbors of i+l
A[i+1,Pa] = solve(K[Pa,Pal, K[i+1,Pal)
D[i+1,i+1] = K[i+1,i+1] - dot(K[i+1,Pa],A[i+1,Pa])

}

= We need to solve n — 1 linear systems of size at most m x m.

= We effectively model a (sparse) Cholesky factor instead of
computing it.

16

Choosing neighbor sets

Matern Covariance Function:

1
K(si,sj) = m(HSf = sjll¢)" 2 (lIsi — sjl|¢); ¢ >0,v >0,

=1 Smoothness (L)

@ —
g 25
= 35
£3)
5<
O o

o~

o

o 0.05

o4

0 2 4 Distance 6 8 10

Choosing neighbor sets

= Spatial covariance functions decay with distance

= Vecchia (1988): N(s;) = m—nearest neighbors of s; in
$1,82,...,85i-1
= Nearest points have highest correlations
= Theory: “Screening effect” — Stein, 2002

= We use Vecchia's choice of m-nearest neighbor

= Other choices proposed in Stein et al. (2004); Gramacy and
Apley (2015); Guinness (2018) can also be used, with
additional discussion in Finley et al. (2019) and Katzfuzz and
Guinness (2021)

18

Nearest neighbors

0.75

Northing
o
g

0.00 0.25 0.50 0.75 1.00
Easting

19

Sparse precision matrices

= The neighbor sets and the covariance function K(-,-) define a
sparse Cholesky factor A
- N(w|0,Kg) ~ N(w|0,Kg) ; Ky = (1—A)TDI(1- A)

n=1000, m=10,
Sparsity: 97%

I-A D! K,

= det(Ky) = [17, Di,

=il . .
= K, is sparse with O(nm?) entries

Explore some A and ke_l sparsity patterns https://github.com/finleya/NNGP_LDL 20

https://github.com/finleya/NNGP_LDL

Extension to a Process

= We have defined w ~ N(0, Ky) over the set of data locations
SE= {51,52,...,Sn}

= Fors ¢ S, define N(s) as set of m-nearest neighbors of s in S

= Define w(s) = 3=,.5.en(s) 2i(s)w(si) + n(s) where
ind
n(s) ~ N(0, d(s))
= 2;(s) and d(s) are once again obtained by solving m x m
system

= Well-defined GP over entire domain
= Nearest Neighbor GP (NNGP) — Datta et al., JASA, (2016)

21

Hierarchical spatial regression with NNGP

Spatial linear model

y(s) = x(s)" B + w(s) + e(s)
= w(s) modeled as NNGP derived from a GP(0, (-,-, |02, ¢))
= ¢(s) Y N(0, 72) contributes to the nugget
= Priors for the parameters 3, 02, 72 and ¢

= Only difference from a full GP model is the NNGP prior w(s)

22

Hierarchical spatial regression with NNGP

Full Bayesian Model

N(y|XB +w,721) x N(w|0, Kg) x N(B| s, Vs)
x IG(1?| ar, by) x 1G(0? | a5, by) x Unif(¢| ag, by)

Gibbs sampler:

= Full conditionals for B, 72, 02 and w(s;)’s
= Metropolis step for updating ¢

= Posterior predictive distribution at any location using
composition sampling

23

Choosing m

- 2.40

1.35 —o— NNGP RMSPE
Full GP RMSPE
--@-- NNGP 95% Cl Width [23®
1.30 o T Full GP 95% CI Width <
w \ Fas0 B
g \ =
1.25 o '\ I 2.25 G
= . C b
. o 2.20 O
~So—o a
1.20 e =
Sel, F2.as
g L} ... - .
1.15 Lz2.10
T T [T T I — T
1 5 10 15 20 25

= Run NNGP in parallel for few values of m
= Choose m based on model evaluation metrics

= Our results suggested that typically m a~ 20 yielded excellent
approximations to the full GP

24

Storage and computation

= Storage:

= Never needs to store n x n distance matrix
= Stores smaller m x m matrices
= Total storage requirements O(nm?)

= Computation:

= Only involves inverting small m x m matrices
= Total flop count per iteration of Gibbs sampler is O(nm?)

= Since m < n, NNGP offers great scalability for large datasets

25

Simulation experiment

= 2500 locations on a unit square

= y(s) = Po+ Six(s) + w(s) + €(s)

= Single covariate x(s) generated as iid N(0, 1)

= Spatial effects generated from GP(0,02R(-, | ¢))

= R(-,-|¢) is exponential correlation function with decay ¢

= Candidate models: Full GP, Gaussian Predictive Process
(GPP) with 64 knots and NNGP

26

Fitted Surfaces

|-

NNGP, m =10 NNGP, m =20

Figure: Univariate synthetic data analysis o7

Parameter estimates

NNGP Predictive Process Full
True m = 10 m = 20 64 knots Gaussian Process
Bo 1 1.00 (0.62, 1.31) 1.03 (0.65, 1.34) 1.30 (0.54, 2.03) 1.03 (0.69, 1.34)
B1 5 5.01 (4.99, 5.03) 5.01 (4.99, 5.03) 5.03 (4.99, 5.06) 5.01 (4.99, 5.03)
o? 1 0.96 (0.78, 1.23) 0.94 (0.77, 1.20) 1.29 (0.96, 2.00) 0.94 (0.76, 1.23)
2 01 0.10 (0.08, 0.13) 0.10 (0.08, 0.13) 0.08 (0.04, 0.13) 0.10 (0.08, 0.12)
& 12 12.93 (9.70, 16.77) 13.36 (9.99, 17.15) 5.61 (3.48, 8.09) 13.52 (9.92, 17.50)

28

Model evaluation

NNGP Predictive Process Full
m=10 m=20 64 knots Gaussian Process
DIC score 2390 2377 13678 2364
RMSPE 1.2 1.2 1.68 1.2
Run time (Minutes) 14.40 46.47 43.36 560.31

= NNGP performs at par with Full GP

= GPP oversmooths and performs much worse both in terms of
parameter estimation and model comparison

= NNGP yields huge computational gains

29

Multvariate spatial linear model

= Spatial linear model for g-variate spatial data:
yvi(s) = x; (s)B; + wi(s) + €i(s) for i =1,2,...,q

= €(s) = (e1(s),e2(8), .- -, eq(s)) T ~ N(0, E) where E is the
g X g noise matrix

= w(s) = (wi(s), wa(s),...,wy(s))" is modeled as a g-variate
Gaussian process

30

Multivariate GPs

= Cov(w(s;),w(sj)) = K(si,s;|0) —a g x q cross-covariance
matrix

= Choices for the function K(-,-|8)

= Multivariate Matérn
= Linear model of co-regionalization

= For data observed at n locations, all choices lead to a dense
ng x nq matrix Kg = Cov(w(s1), w(sz2),...,w(ss))

= Not scalable when ngq is large

31

Multivariate NNGPs

= Cholesky factor approach similar to the univariate case

—W(Sl) [0 0 0 000 0 0_ _W(Sl)_ _1’](51)_
W(S2) A 0 0 e 0 0 W(Sz) 77(52)
W(S3) = A31 A32 0 000 0 0 W(S3) + 7](53)

W(Sn) _Anl A,~,2 An3 N An,n—l 0_ _W(Sn)_ _7’](Sn)_

—=w=Aw+1n; n~ N(0,D), D= diag(D1,D,,...,D,).
Only differences:
= w(s;) and n(s;)'s are g x 1 vectors and Aj; and D;'s are g x q
matrix

= we must solve n — 1 at most mq x mq linear systems
(challenging when g gets large, e.g., ¢ > 5).

32

U.S. Forest biomass data

Observed biomass NDVI

= Forest biomass data from measurements at 114,371 plots

= NDVI (greenness) is used to predict forest biomass

33

U.S. Forest biomass data

Non Spatial Model A A
Biomass = (o + 1 NDVI + error, (o = 1.043, 51 = 0.0093

Al 5 ——— >

s —~

0 1000 2001

Semivariance

zasting (km) Distance (km)
Residuals Variogram of residuals

Strong spatial pattern among residuals

34

Forest biomass dataset

= n=~ 10° (Forest Biomass) = full GP requires storage ~ 40Gb
and time ~ 140 hrs per iteration.

= We use a spatially varying coefficients NNGP model

Model
= Biomass(s) = fo(s) + B1(s)NDVI(s) + €(s)

= w(s) = (Bo(s), B1(s))" ~ Bivariate NNGP(0, K(-,-|6)),
m=2>5

= Time ~ 6 seconds per iteration

= Full inferential output: 41 hours (25000 MCMC iterations)

85

Forest biomass data

- 500 " 500
E s w E oo 300
z w0 w00
§ s w0 § g 200

.
Observed biomass

g H 0.012
% o ‘ wf?} T o
% 5 = > 0.008

g c&, o L8
s \.u LS 5
- o § 8

Bo(s) Brovi(s) 0

Reducing parameter dimensionality

= The Gibbs sampler algorithm for the NNGP updates
w(sy1), w(s2),...,w(s,) sequentially

= Dimension of the MCMC for this sequential algorithm is O(n)

= |f the number of data locations n is very large, this
high-dimensional MCMC can converge slowly

= Although each iteration for the NNGP model will be very fast,
many more MCMC iterations may be required

37

Collapsed NNGP

= Same model:

Y(8) = x(s)7 B+ w(s) + <[s)
w(s) ~ NNGP(0,K(-,-|8))
e(s) X N(0, 72)

= Latent model: y ~ N(XB + W,T2|); w ~ N(O, Re)

= Collapsed model: Marginalizing out w, y ~ N(X8, 721 + Ky)

38

Collapsed NNGP

y ~ N(XB, 721 + Ky)

= Only involves few parameters 3, 72 and 6 = (02, ¢)
= Drastically reduces the MCMC dimensionality

= Gibbs sampler updates are based on sparse linear systems
~ 1
using Ky~ (e.g., use CHOLMOD)

= Improved MCMC convergence
= Can recover posterior distribution of w |y

= Complexity of the algorithm depends on the design of the
data locations and is not guaranteed to be O(n)

39

Response NNGP

= w(s) ~ GP(0,K(-,-|0)) = y(s) ~ GP(x(s)" B, (-, 2, 0))

= X(si,s;) = K(si,s;|0) + 72 §(si = s;) (& is Kronecker delta)

= We can directly derive the NNGP covariance function
corresponding to X(-,-)

= 3 is the NNGP covariance matrix for the n locations

= Response model: y ~ N(X,B,i)

= Storage and computations are guaranteed to be O(n)

= Low dimensional MCMC = Improved convergence

= Cannot coherently recover w |y

40

Conjugate NNGP

= Full GP model: y ~ N(X3,X) where X = 0°M

= M=R(¢)+al

» a = 72/0? is the ratio of the noise to signal variance
= ¥ = 52M where M is the NNGP approximation for M

41

Conjugate NNGP

= Full GP model: y ~ N(X3,X) where X = 0°M

= M=R(¢)+al

» a = 72/0? is the ratio of the noise to signal variance
= ¥ = 52M where M is the NNGP approximation for M

= If ¢ and « are known, M, and hence M, are known matrices

= The model becomes a standard Bayesian linear model

= Assume a Normal Inverse Gamma prior for (83,02)7

= (B,0%)7 ~ NIG(p5,V 3, a0, by), ie., B|0o? ~ N(pg,0?Vp)
and 02 ~ IG(a,, by)

» Exact posterior distributions of 3 and ¢ are available

Can handle n in the 100s of millions!

41

Comparison of NNGP models

Latent | Collapsed | Response | Conjugate

O(n) time Yes No Yes Yes
Recovery of w |y Yes Yes No Yes
Parameter High Low Low Low

dimensionality

Inference on @ Yes Yes Yes

42

Comparison of NNGP models

Iy o

Time (minutes per 1000 iterations)

Model
Latent
— Response

Time (minutes per 1000 iterations)
a

.

N

Model
Latent
— Response

— of 4

60 0e+00 1le+06 2e+06 3e+06 4e+06 5e+06

20 40
Number of cores Number of observations (n)

Figure: (a) Runtime for 1000 MCMC iterations for n = 100000 and
different number of cores. (b) Runtime for 1000 MCMC iterations using
40 cores and n from 1000 to 5 million. Model type (latent and response)
refers to different NNGP parameterizations, see Finley et al. 2022.

43

Summary of Nearest Neighbor Gaussian Processes

= Sparsity inducing Gaussian process

= Constructed from sparse Cholesky factors based on m nearest
neighbors

= Scalability in storage, inverse, and determinant of NNGP
covariance matrix are all O(n)

= Proper Gaussian process, allows for inference using hierarchical
spatial models and predictions at arbitrary spatial resolution

= Closely approximates full GP inference, does not oversmooth
like low rank models

= Extension to multivariate NNGP

= Collapsed and response NNGP models with improved MCMC
convergence

= R packages spNNGP (Finley et al. 2022) and spOccupancy

(Doser et al., 2022) on CRAN
44

https://www.jstatsoft.org/article/view/v103i05
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.13897

	0.EndRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.EndLeft:
	anm0:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

