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• Course materials available at
https://doserjef.github.io/CASANR23-Spatial-Modeling/

https://doserjef.github.io/CASANR23-Spatial-Modeling/


What is spatial data?

• Any data with some geographical information (i.e., spatially
indexed)

• Common sources of spatial data: agricultural, climatology,
forestry, ecology, environmental health, disease epidemiology,
product marketing, etc.

• have many important predictors and response variables
• are often presented as maps

• Other examples where spatial need not refer to space on
earth:

• Genetics (position along a chromosome)
• Neuroimaging (data for each voxel in the brain)
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Point-referenced spatial data

• Each observation is associated with a location (point)
• Data represents a sample from a continuous spatial domain
• Also referred to as geocoded or geostatistical data
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Figure: Pollutant levels in Europe in March, 2009
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Point level modeling

• Point-level modeling refers to modeling of point-referenced
data collected at locations referenced by coordinates (e.g.,
lat-long, Easting-Northing).

• Data from a spatial process {Y (s) : s ∈ D}, D is a subset in
Euclidean space.

• Example: Y (s) is a pollutant level at site s
• Conceptually: Pollutant level exists at all possible sites
• Practically: Data will be a partial realization of a spatial

process – observed at {s1, . . . , sn}
• Statistical objectives: Inference about the process Y (s);

predict at new locations.
• Remarkable: Can learn about entire Y (s) surface. The key:

Structured dependence

4



Exploratory data analysis (EDA): Plotting the data

• A typical setup: Data observed at n locations {s1, . . . , sn}
• At each si we observe the response y(si) and a p × 1 vector of

covariates x(si)
• Surface plots of the data often helps to understand spatial

patterns

y(s) x(s)
Figure: Response and covariate surface plots for Dataset 1
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What’s so special about spatial?

• Linear regression model: y(si) = x(si)⊤β + ϵ(si)
• ϵ(si) are iid N(0, τ2) errors
• y = (y(s1), . . . , y(sn))⊤; X = (x(s1)⊤, . . . , x(sn)⊤)⊤

• Inference: β̂ = (X⊤X)−1X⊤y ∼ N(β, τ2(X⊤X)−1)
• Prediction at new location s0: ŷ(s0) = x(s0)⊤β̂

• Although the data is spatial, this is an ordinary linear
regression model
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Residual plots

• Surface plots of the residuals (y(s) − ŷ(s)) help to identify
any spatial patterns left unexplained by the covariates

Figure: Residual plot for Dataset 1 after linear regression on x(s)

• No evident spatial pattern in plot of the residuals
• The covariate x(s) seem to explain all spatial variation in y(s)
• Does a non-spatial regression model always suffice?
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Western Experimental Forestry (WEF) data

• Data consist of a census of all trees in a 10 ha. stand in
Oregon

• Response of interest: Diameter at breast height (DBH)
• Covariate: Tree species (Categorical variable)

DBH Species Residuals

• Local spatial patterns in the residual plot
• Simple regression on species seems to be not sufficient
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More EDA

• Besides eyeballing residual surfaces, how to do more formal
EDA to identify spatial pattern?

First law of geography
“Everything is related to everything else, but near things are
more related than distant things.” – Waldo Tobler

• In general (Y (s + h) − Y (s))2 roughly increasing with ||h||
will imply a spatial correlation

• Can this be formalized to identify spatial pattern?
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Empirical semivariogram

• Binning: Make intervals I1 = (0, m1), I2 = (m1, m2), and so
forth, up to IK = (mK−1, mK ). Representing each interval by
its midpoint tk , we define:

N(tk) = {(si , sj) : ∥si − sj∥ ∈ Ik}, k = 1, . . . , K .

• Empirical semivariogram:

γ(tk) = 1
2|N(tk)|

∑
si ,sj ∈N(tk)

(Y (si) − Y (sj))2

• For spatial data, the γ(tk) is expected to roughly increase
with tk

• A flat semivariogram would suggest little spatial variation
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Empirical variogram: Data 1

y residuals

• Residuals display little spatial variation
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Empirical variograms: WEF data

• Regression model: DBH ∼ Species

DBH Residuals

• Variogram of the residuals confirm unexplained spatial
variation
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Modeling with the locations

• When purely covariate based models does not suffice, one
needs to leverage the information from locations

• General model using the locations:
y(s) = x(s)⊤β + w(s) + ϵ(s) for all s ∈ D

• How to choose the function w(·)?

• Since we want to predict at any location over the entire
domain D , this choice will amount to choosing a surface w(s)

• How should such a surface be chosen?

13



Gaussian Processes (GPs)

• One popular approach to model w(s) is via Gaussian
Processes (GP)

• The collection of random variables {w(s) | s ∈ D} is a GP if
• it is a valid stochastic process
• all finite dimensional densities {w(s1), . . . , w(sn)} follow

multivariate Gaussian distribution

• A GP is completely characterized by a mean function m(s)
and a covariance function C(·, ·)

• Advantage: Likelihood based inference.
w = (w(s1), . . . , w(sn))⊤ ∼ N(m, C) where
m = (m(s1), . . . , m(sn))⊤ and C = C(si , sj)
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Valid covariance functions and isotropy

• C(·, ·) needs to be valid. For any/all {s1, s2, . . . , sn}, the
resulting covariance matrix C(si , sj) for
(w(s1), w(s2), . . . , w(sn)) must be positive definite

• So, C(·, ·) needs to be a positive definite function
• Simplifying assumptions:

• Stationarity: C(s1, s2) only depends on h = s1 − s2 (and is
denoted by C(h))

• Isotropic: C(h) = C(||h||)
• Anisotropic: Stationary but not isotropic

• Isotropic models are popular because of their simplicity,
interpretability, and because a number of relatively simple
parametric forms are available as candidates for C .
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Some common isotropic covariance functions

Model Covariance function, C(t) = C(||h||)

Spherical C(t) =


0 if t ≥ 1/ϕ

σ2
[
1 − 3

2ϕt + 1
2(ϕt)3

]
if 0 < t ≤ 1/ϕ

τ2 + σ2 otherwise

Exponential C(t) =
{

σ2 exp(−ϕt) if t > 0
τ2 + σ2 otherwise

Powered
exponential

C(t) =
{

σ2 exp(−|ϕt|p) if t > 0
τ2 + σ2 otherwise

Matérn
at ν = 3/2

C(t) =
{

σ2 (1 + ϕt) exp(−ϕt) if t > 0
τ2 + σ2 otherwise
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Notes on exponential model

C(t) =
{

τ2 + σ2 if t = 0
σ2 exp(−ϕt) if t > 0

.

• We define the effective range, t0, as the distance at which this
correlation has dropped to only 0.05. Setting exp(−ϕt0) equal
to this value we obtain t0 ≈ 3/ϕ, since log(0.05) ≈ −3.

• The nugget τ2 is often viewed as a “nonspatial effect
variance,”

• The partial sill (σ2) is viewed as a “spatial effect variance.”
• σ2 + τ2 gives the maximum total variance often referred to as

the sill
• Note discontinuity at 0 due to the nugget. Intentional! To

account for measurement error or micro-scale variability.
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Covariance functions and semivariograms

• Recall: Empirical semivariogram:
γ(tk) = 1

2|N(tk)|
∑

si ,sj ∈N(tk)(Y (si) − Y (sj))2

• For any stationary GP,
E (Y (s + h) − Y (s))2/2 = C(0) − C(h) = γ(h)

• γ(h) is the semivariogram corresponding to the covariance
function C(h)

• Example: For exponential GP,

γ(t) =
{

τ2 + σ2(1 − exp(−ϕt)) if t > 0
0 if t = 0

, where t = ||h||
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Covariance functions and semivariograms
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Covariance functions and semivariograms
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The Matèrn covariance function

• The Matèrn is a very versatile family:

C(t) =
{

σ2

2ν−1Γ(ν)(2√
νtϕ)νKν(2

√
(ν)tϕ) if t > 0

τ2 + σ2 if t = 0

Kν is the modified Bessel function of order ν (computationally
tractable)

• ν is a smoothness parameter controlling process smoothness.
Remarkable!

• ν = 1/2 gives the exponential covariance function
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Kriging: Spatial prediction at new locations

• Goal: Given observations w = (w(s1), w(s2), . . . , w(sn))⊤,
predict w(s0) for a new location s0

• If w(s) is modeled as a GP, then (w(s0), w(s1), . . . , w(sn))⊤

jointly follow multivariate normal distribution

• w(s0) | w follows a normal distribution with
• Mean (kriging estimator): m(s0) + c⊤C−1(w − m), where

m = E (w), C = Cov(w), c = Cov(w, w(s0))
• Variance: C(s0, s0) − c⊤C−1c

• The GP formulation gives the full predictive distribution of
w(s0)|w
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Modeling with GPs

Spatial linear model

y(s) = x(s)⊤β + w(s) + ϵ(s)

• w(s) modeled as GP(0, C(· | θ)) (usually without a nugget)

• ϵ(s) iid∼ N(0, τ2) contributes to the nugget

• Under isotropy: C(s + h, s) = σ2R(||h|| ; ϕ)

• w = (w(s1), . . . , w(sn))⊤ ∼ N(0, σ2R(ϕ)) where
R(ϕ) = σ2(R(||si − sj || ; ϕ))

• y = (y(s1), . . . , y(sn))⊤ ∼ N(Xβ, σ2R(ϕ) + τ2I)
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Parameter estimation

• y = (y(s1), . . . , y(sn))⊤ ∼ N(Xβ, σ2R(ϕ) + τ2I)

• We can obtain MLEs of parameters β, τ2, σ2, ϕ based on the
above model and use the estimates to krige at new locations

• In practice, the likelihood is often very flat with respect to the
spatial covariance parameters and choice of initial values is
important

• Initial values can be eyeballed from empirical semivariogram of
the residuals from ordinary linear regression
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Model comparison

• For k total parameters and sample size n:
• AIC: 2k − 2 log(l(y | β̂, θ̂, τ̂ 2))
• BIC: log(n)k − 2 log(l(y | β̂, θ̂, τ̂ 2))

• Prediction based approaches using holdout data:
• Root Mean Square Predictive Error (RMSPE):√

1
nout

∑nout
i=1(yi − ŷi)2

• Coverage probability (CP): 1
nout

∑nout
i=1 I(yi ∈ (ŷi,0.025, ŷi,0.975))

• Width of 95% confidence interval (CIW):
1

nout

∑nout
i=1(ŷi,0.975 − ŷi,0.025)

• The last two approaches compares the distribution of yi

instead of comparing just their point predictions
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Back to WEF data

Table: Model comparison

Spatial Non-spatial

AIC 4419 4465
BIC 4448 4486

RMSPE 18 21
CP 93 93

CIW 77 82
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WEF data: Kriged surfaces

DBH Estimates Standard errors
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Summary

• Geostatistics – Analysis of point-referenced spatial data
• Surface plots of data and residuals
• EDA with empirical semivariograms
• Modeling unknown surfaces with Gaussian Processes
• Kriging: Predictions at new locations
• Spatial linear regression using Gaussian Processes
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