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Linear Regression

• Linear regression is, perhaps, the most widely used statistical
modeling tool.

• It addresses the following question: How does a quantity of
primary interest, y , vary as (depend upon) another quantity,
or set of quantities, x?

• The quantity y is called the response or outcome variable.
Some people simply refer to it as the dependent variable.

• The variable(s) x are called explanatory variables, covariates
or simply independent variables.

• In general, we are interested in the conditional distribution of
y , given x , parametrized as p(y | θ, x). 1



• Typically, we have a set of units or experimental subjects
i = 1, 2, . . . , n.

• For each of these units we have measured an outcome yi and
a set of explanatory variables x⊤

i = (1, xi1, xi2, . . . , xip).

• The first element of x⊤
i is often taken as 1 to signify the

presence of an “intercept.”

• We collect the outcome and explanatory variables into an
n × 1 vector and an n × (p + 1) matrix:

y =


y1
y2
...

yn

 ; X =


1 x11 x12 . . . x1p

1 x21 x22 . . . x2p
... ... ... ... ...
1 xn1 xn2 . . . xnp

 =


x⊤

1
x⊤

2
...

x⊤
n

 .
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• The linear model is the most fundamental of all serious
statistical models underpinning:

• ANOVA: yi is continuous, xij ’s are all categorical

• REGRESSION: yi is continuous, xij ’s are continuous

• ANCOVA: yi is continuous, xij ’s are continuous for some j and
categorical for others.
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Conjugate Bayesian Linear Regression

• A conjugate Bayesian linear model is given by:

yi | β, σ2, xi
ind∼ N(µi , σ2); i = 1, 2, . . . , n ;

µi = β0 + β1xi1 + · · · + βpxip = x⊤
i β ; β = (β0, β1, . . . , βp)⊤ ;

β | σ2 ∼ N(µβ, σ2Vβ) ; σ2 ∼ IG(a, b) .

• Unknown parameters include the regression parameters and
the variance, i.e. θ = {β, σ2}.

• We assume X is observed without error and all inference is
conditional on X.

• The above model is often written in terms of the posterior
density p(θ | y) ∝ p(θ, y):

IG(σ2 | a, b) × N(β | µβ, σ2Vβ) ×
n∏

i=1
N(yi | x⊤

i β, σ2).
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Conjugate Bayesian (General) Linear Regression

• A more general conjugate Bayesian linear model is given by:

y | β, σ2, X ∼ N(Xβ, σ2Vy )
β | σ2 ∼ N(µβ, σ2Vβ) ;
σ2 ∼ IG(a, b) .

• Vy , Vβ and µβ are assumed fixed.
• Unknown parameters include the regression parameters and

the variance, i.e. θ = {β, σ2}.
• We assume X is observed without error and all inference is

conditional on X.
• The posterior density p(θ | y) ∝ p(θ, y):

IG(σ2 | a, b) × N(β | µβ, σ2Vβ) × N(y | Xβ, σ2Vy )

• The model on the previous slide is a special case with Vy = In

(n × n identity matrix). 5



Conjugate Bayesian (General) Linear Regression

• The joint posterior density can be written as

p(β, σ2 | y) ∝
IG(σ2 | a∗, b∗)︸ ︷︷ ︸ × N

(
β | Mm, σ2M

)
︸ ︷︷ ︸

p(σ2 | y) p(β | σ2, y)
,

where

a∗ = a + n
2 ; b∗ = b + 1

2
(
µ⊤

β V−1
β µβ + y⊤V−1

y y − m⊤Mm
)

;

m = V−1
β µβ + X⊤V−1

y y ; M−1 = V−1
β + X⊤V−1

y X .

• Exact posterior sampling from p(β, σ2 | y) will automatically
yield samples from p(β | y) and p(σ2 | y).

• For each j = 1, 2, . . . , N do the following:
1. Draw σ2

(j) ∼ IG(a∗, b∗)
2. Draw β(j) ∼ N

(
Mm, σ2

(j)M
)

• The above is sometimes referred to as composition sampling.
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Exact sampling from joint posterior distributions

• Suppose we wish to draw samples from a joint posterior:

p(θ1, θ2 | y) = p(θ1 | y) × p(θ2 | θ1, y) .

• In conjugate models, it is often easy to draw samples from
p(θ1 | y) and from p(θ2 | θ1, y).

• We can draw N samples from p(θ1, θ2 | y) as follows.

• For each j = 1, 2, . . . , N do the following:
1. Draw θ1(j) ∼ p(θ1 | y)
2. Draw θ2(j) ∼ p(θ2 | θ1(j), y)

• Remarkably, the θ2(j)’s drawn above have marginal
distribution p(θ2 | y) (see, Gelfand and Smith 1990).

• “Automatic Marginalization” we draw samples p(θ1, θ2 | y)
and automatically get samples from p(θ1 | y) and p(θ2 | y).
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Bayesian predictions from linear regression

• Let ỹ denote an m × 1 vector of outcomes we seek to predict
based upon predictors X̃.

• We seek the posterior predictive density:

p(ỹ | y) =
∫

p(ỹ | θ, y)p(θ | y)dθ.

• Posterior predictive inference: sample from p(ỹ | y).

• For each j = 1, 2, . . . , N do the following:
1. Draw θ(j) ∼ p(θ | y)

2. Draw ỹ(j) ∼ p(ỹ | θ(j), y)
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Bayesian predictions from linear regression (cont’d)

• For legitimate probabilistic predictions (forecasting), the
conditional distribution p(ỹ | θ, y) must be well-defined.

• For example, consider the case with Vy = In. Specify the
linear model:[

y
ỹ

]
=
[
X
X̃

]
β +

[
ϵ

ϵ̃

]
;
[
ϵ

ϵ̃

]
∼ N

([
0
0

]
, σ2

[
In O
O Im

])
.

• Easy to derive the conditional density:

p(ỹ | θ, y) = p(ỹ | θ) = N(ỹ | X̃β, σ2Im)

• Posterior predictive density:

p(ỹ | y) =
∫

N(ỹ | X̃β, σ2Im)p(β, σ2 | y)dβdσ2 .

• For each j = 1, 2, . . . , N do the following:
1. Draw {β(j), σ2

(j)} ∼ p(β, σ2 | y)

2. Draw ỹ(j) ∼ N(X̃β(j), σ2
(j)Im) 9



Bayesian predictions from general linear regression

• For example, consider the case with general Vy . Specify:

[
y
ỹ

]
=
[
X
X̃

]
β +

[
ϵ

ϵ̃

]
;
[
ϵ

ϵ̃

]
∼ N

([
0
0

]
, σ2

[
Vy Vyỹ

V⊤
yỹ Vỹ

])
.

• Derive the conditional density
p(ỹ | θ, y) = N

(
ỹ | µỹ |y , σ2Vỹ |y

)
:

µỹ |y = X̃β + V⊤
yỹ V−1

y (y − Xβ) ; Vỹ |y = Vỹ − V⊤
yỹ V−1

y Vyỹ .

• Posterior predictive density:

p(ỹ | y) =
∫

N
(
ỹ | µỹ |y , σ2Vỹ |y

)
p(β, σ2 | y)dβdσ2.

• For each j = 1, 2, . . . , N do the following:
1. Draw {β(j), σ2

(j)} ∼ p(β, σ2 | y)

2. Compute µỹ |y using β(j) and draw ỹ(j) ∼ N(µỹ |y , σ2
(j)Vỹ )
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Application to Bayesian Geostatistics

• Consider the spatial regression model

y(si) = x⊤(si)β + w(si) + ϵ(si),

where w(si)’s are spatial random effects and ϵ(si)’s are
unstructured errors (“white noise”).

• w = (w(s1), w(s2), . . . , w(sn))⊤ ∼ N(0, σ2R(ϕ))
• ϵ = (ϵ(s1), ϵ(s2), . . . , ϵ(sn))⊤ ∼ N(0, τ2In)
• Integrating out random effects leads to a Bayesian model:

IG(σ2 | a, b) × N(β | µβ, σ2Vβ) × N(y | Xβ, σ2Vy )

where Vy = R(ϕ) + αIn and α = τ2/σ2.
• Fixing ϕ and α (e.g., from variogram or other EDA) yields a

conjugate Bayesian model (see bayesGeostatExact() in
spBayes package).

• Exact posterior sampling is easily achieved as before!
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Inference on spatial random effects

• Rewrite the model in terms of w as:

IG(σ2 | a, b)×N(β | µβ, σ2Vβ) × N(w | 0, σ2R(ϕ))
× N(y | Xβ + w, τ2In).

• Posterior distribution of spatial random effects w:

p(w | y) =
∫

N(w | Mm, σ2M) × p(β, σ2 | y)dβdσ2 ,

where m = (1/α)(y − Xβ) and M−1 = R−1(ϕ) + (1/α)In.

• For each j = 1, 2, . . . , N do the following:
1. Draw {β(j), σ2

(j)} ∼ p(β, σ2 | y)

2. Compute m from β(j) and draw w(j) ∼ N(Mm, σ2
(j)M)
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Inference on the process

• Posterior distribution of w(s0) at new location s0:

p(w(s0) | y) =
∫

N(w(s0) | µw(s0)|w , σ2
w(s0)|w )×p(σ2, w | y)dσ2dw ,

where

µw(s0)|w = r⊤(s0; ϕ)R−1(ϕ)w ;
σ2

w(s0)|w = σ2{1 − r⊤(s0; ϕ)R−1(ϕ)r(s0, ϕ)}

• For each j = 1, 2, . . . , N do the following:
1. Compute µw(s0)|w and σ2

w(s0)|w from w(j) and σ2
(j).

2. Draw w(j)(s0) ∼ N(µw(s0)|w , σ2
w(s0)|w ).
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Bayesian “kriging” or prediction

• Posterior predictive distribution at new location s0 is
p(y(s0) | y):∫

N(y(s0) | x⊤(s0)β + w(s0), ασ2) × p(β, σ2, w | y)dβdσ2dw ,

• For each j = 1, 2, . . . , N do the following:
1. Draw y(j)(s0) ∼ N(x⊤(s0)β(j) + w(j)(s0), ασ2

(j)).
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Non-conjugate models: The Gibbs Sampler

• Let θ = (θ1, . . . , θp) be the parameters in our model.

• Initialize with starting values θ(0) = (θ(0)
1 , . . . , θ

(0)
p )

• For j = 1, . . . , N, update successively using the full conditional
distributions:

θ
(j)
1 ∼ p(θ(j)

1 | θ
(j−1)
2 , . . . , θ

(j−1)
p , y)

θ
(j)
2 ∼ p(θ2 | θ

(j)
1 , θ

(j−1)
3 , . . . , θ

(j−1)
p , y)

...
(the generic k th element)
θ

(j)
k ∼ p(θk |θ(j)

1 , . . . , θ
(j)
k−1, θ

(j−1)
k+1 , . . . , θ

(j−1)
p , y)

...
θ

(j)
p ∼ p(θp | θ

(j)
1 , . . . , θ

(j)
p−1, y)
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• In principle, the Gibbs sampler will work for extremely
complex hierarchical models. The only issue is sampling from
the full conditionals. They may not be amenable to easy
sampling – when these are not in closed form. A more general
and extremely powerful - and often easier to code - algorithm
is the Metropolis-Hastings (MH) algorithm.

• This algorithm also constructs a Markov chain, but does not
necessarily care about full conditionals.

• Popular approach: Embed Metropolis steps within Gibbs to
draw from full conditionals that are not accessible to directly
generate from.
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When we don’t want to fix ϕ and α = τ 2/σ2

Latent Bayesian Model

N(y | Xβ + w, τ2I) × N(w | 0, σ2R(ϕ)) × N(β | µβ, Vβ)
× IG(τ2 | aτ , bτ ) × IG(σ2 | aσ, bσ) × Unif (ϕ | aϕ, bϕ)

Sampler:

• Full conditionals for β, τ2, σ2 and w(si)’s
• Metropolis step for updating ϕ

• Pros: Full conditional distributions for all parameters except
ϕ, easy to code up

• Cons: High-dimensional parameter space can mean slow
convergence
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When we don’t want to fix ϕ and α = τ 2/σ2 (cont’d)

Collapsed Bayesian Model

N(y | Xβ, σ2R(ϕ) + τ2I) × N(β | µβ, Vβ)
× IG(τ2 | aτ , bτ ) × IG(σ2 | aσ, bσ) × Unif (ϕ | aϕ, bϕ)

Sampler:

• Full conditional for β

• Metropolis step for updating τ2, σ2, ϕ

• Pros: Low-dimensional parameter space
• “Recover” w(si)’s in a posterior predictive fashion

We can also integrate out β! See Finley et al. (2015) for details
https://www.jstatsoft.org/article/view/v063i13 and
implementation in the spBayes package.
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The Metropolis-Hastings Algorithm

• The Metropolis-Hastings algorithm: Start with a initial value for θ = θ(0).
Select a candidate or proposal distribution from which to propose a value
of θ at the j-th iteration: θ(j) ∼ q(θ(j−1), ν). For example,
q(θ(j−1), ν) = N(θ(j−1), ν) with ν fixed.

• Compute

r = p(θ∗ | y)q(θ(j−1) | θ∗, ν)
p(θ(j−1) | y)q(θ∗ | θ(j−1)ν)

• If r ≥ 1 then set θ(j) = θ∗. If r ≤ 1 then draw U ∼ (0, 1). If U ≤ r then
θ(j) = θ∗. Otherwise, θ(j) = θ(j−1).

• Repeat for j = 1, . . . N. This yields θ(1), . . . , θ(N), which, after a burn-in
period, will be samples from the true posterior distribution. It is
important to monitor the acceptance ratio r of the sampler through the
iterations. Rough recommendations: for vector updates r ≈ 20%., for
scalar updates r ≈ 40%. This can be controlled by “tuning” ν.

• Popular approach: Embed Metropolis steps within Gibbs to draw from
full conditionals that are not accessible to directly generate from.
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• Example: For the linear model, our parameters are (β, σ2). We write
θ = (β, log(σ2)) and, at the j-th iteration, propose θ∗ ∼ N(θ(j−1), Σ). The log
transformation on σ2 ensures that all components of θ have support on the
entire real line and can have meaningful proposed values from the multivariate
normal. But we need to transform our prior to p(β, log(σ2)).

• Let z = log(σ2) and assume p(β, z) = p(β)p(z). Let us derive p(z).
REMEMBER: we need to adjust for the jacobian. Then
p(z) = p(σ2)|dσ2/dz| = p(ez )ez . The jacobian here is ez = σ2.

• Let p(β) = 1 and an p(σ2) = IG(σ2 | a, b). Then log-posterior is:

−(a + n/2 + 1)z + z −
1
ez {b + 1

2
(Y − Xβ)T (Y − Xβ)}.

• A symmetric proposal distribution, say q(θ∗|θ(j−1), Σ) = N(θ(j−1), Σ), cancels
out in r . In practice it is better to compute log(r):
log(r) = log(p(θ∗ | y) − log(p(θ(j−1) | y)). For the proposal, N(θ(j−1), Σ), Σ is a
d × d variance-covariance matrix, and d = dim(θ) = p + 1.

• If log r ≥ 0 then set θ(j) = θ∗. If log r ≤ 0 then draw U ∼ (0, 1). If U ≤ r (or
log U ≤ log r) then θ(j) = θ∗. Otherwise, θ(j) = θ(j−1).

• Repeat the above procedure for j = 1, . . . N to obtain samples θ(1), . . . , θ(N).
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