Bayesian Linear Models

Andrew Finley ${ }^{1}$ \& Jeffrey Doser ${ }^{2}$
May 15, 2023
${ }^{1}$ Department of Forestry, Michigan State University.
${ }^{2}$ Department of Integrative Biology, Michigan State University.

Linear Regression

- Linear regression is, perhaps, the most widely used statistical modeling tool.
- It addresses the following question: How does a quantity of primary interest, y, vary as (depend upon) another quantity, or set of quantities, x ?
- The quantity y is called the response or outcome variable. Some people simply refer to it as the dependent variable.
- The variable(s) x are called explanatory variables, covariates or simply independent variables.
- In general, we are interested in the conditional distribution of y, given x, parametrized as $p(y \mid \theta, x)$.
- Typically, we have a set of units or experimental subjects $i=1,2, \ldots, n$.
- For each of these units we have measured an outcome y_{i} and a set of explanatory variables $\mathbf{x}_{i}^{\top}=\left(1, x_{i 1}, x_{i 2}, \ldots, x_{i p}\right)$.
- The first element of \mathbf{x}_{i}^{\top} is often taken as 1 to signify the presence of an "intercept."
- We collect the outcome and explanatory variables into an $n \times 1$ vector and an $n \times(p+1)$ matrix:

$$
\mathbf{y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right) ; \quad \mathbf{X}=\left[\begin{array}{ccccc}
1 & x_{11} & x_{12} & \ldots & x_{1 p} \\
1 & x_{21} & x_{22} & \ldots & x_{2 p} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n 1} & x_{n 2} & \ldots & x_{n p}
\end{array}\right]=\left(\begin{array}{c}
\mathbf{x}_{1}^{\top} \\
\mathbf{x}_{2}^{\top} \\
\vdots \\
\mathbf{x}_{n}^{\top}
\end{array}\right) .
$$

- The linear model is the most fundamental of all serious statistical models underpinning:
- ANOVA: y_{i} is continuous, $x_{i j}$'s are all categorical
- REGRESSION: y_{i} is continuous, $x_{i j}$'s are continuous
- ANCOVA: y_{i} is continuous, $x_{i j}$'s are continuous for some j and categorical for others.

Conjugate Bayesian Linear Regression

- A conjugate Bayesian linear model is given by:

$$
\begin{aligned}
& y_{i} \mid \boldsymbol{\beta}, \sigma^{2}, \mathbf{x}_{i} \stackrel{i n d}{\sim} N\left(\mu_{i}, \sigma^{2}\right) ; \quad i=1,2, \ldots, n ; \\
& \mu_{i}=\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{p} x_{i p}=\mathbf{x}_{i}^{\top} \boldsymbol{\beta} ; \quad \boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{p}\right)^{\top} ; \\
& \boldsymbol{\beta} \mid \sigma^{2} \sim N\left(\boldsymbol{\mu}_{\beta}, \sigma^{2} \mathbf{V}_{\beta}\right) ; \quad \sigma^{2} \sim \operatorname{IG}(a, b) .
\end{aligned}
$$

- Unknown parameters include the regression parameters and the variance, i.e. $\boldsymbol{\theta}=\left\{\boldsymbol{\beta}, \sigma^{2}\right\}$.
- We assume \mathbf{X} is observed without error and all inference is conditional on \mathbf{X}.
- The above model is often written in terms of the posterior density $p(\boldsymbol{\theta} \mid \mathbf{y}) \propto p(\boldsymbol{\theta}, \mathbf{y})$:

$$
I G\left(\sigma^{2} \mid a, b\right) \times N\left(\beta \mid \boldsymbol{\mu}_{\beta}, \sigma^{2} \mathbf{V}_{\beta}\right) \times \prod_{i=1}^{n} N\left(y_{i} \mid \mathbf{x}_{i}^{\top} \beta, \sigma^{2}\right)
$$

Conjugate Bayesian (General) Linear Regression

- A more general conjugate Bayesian linear model is given by:

$$
\begin{aligned}
& \mathbf{y} \mid \boldsymbol{\beta}, \sigma^{2}, \mathbf{X} \sim N\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{V}_{y}\right) \\
& \boldsymbol{\beta} \mid \sigma^{2} \sim N\left(\boldsymbol{\mu}_{\beta}, \sigma^{2} \mathbf{V}_{\beta}\right) \\
& \sigma^{2} \sim \operatorname{IG}(a, b)
\end{aligned}
$$

- $\mathbf{V}_{y}, \mathbf{V}_{\beta}$ and $\boldsymbol{\mu}_{\beta}$ are assumed fixed.
- Unknown parameters include the regression parameters and the variance, i.e. $\boldsymbol{\theta}=\left\{\boldsymbol{\beta}, \sigma^{2}\right\}$.
- We assume \mathbf{X} is observed without error and all inference is conditional on \mathbf{X}.
- The posterior density $p(\boldsymbol{\theta} \mid \mathbf{y}) \propto p(\boldsymbol{\theta}, \mathbf{y})$:

$$
I G\left(\sigma^{2} \mid a, b\right) \times N\left(\boldsymbol{\beta} \mid \boldsymbol{\mu}_{\beta}, \sigma^{2} \mathbf{V}_{\beta}\right) \times N\left(\mathbf{y} \mid \mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{V}_{y}\right)
$$

- The model on the previous slide is a special case with $\mathbf{V}_{y}=\mathbf{I}_{n}$ ($n \times n$ identity matrix).

Conjugate Bayesian (General) Linear Regression

- The joint posterior density can be written as

$$
p\left(\beta, \sigma^{2} \mid \mathbf{y}\right) \propto \underbrace{\operatorname{IG}\left(\sigma^{2} \mid a^{*}, b^{*}\right)}_{p\left(\sigma^{2} \mid \mathbf{y}\right)} \times \underbrace{N\left(\beta \mid \mathbf{M m}, \sigma^{2} \mathbf{M}\right)}_{p\left(\beta \mid \sigma^{2}, \mathbf{y}\right)}
$$

where

$$
\begin{aligned}
& a^{*}=a+\frac{n}{2} ; \quad b^{*}=b+\frac{1}{2}\left(\boldsymbol{\mu}_{\beta}^{\top} \mathbf{V}_{\beta}^{-1} \boldsymbol{\mu}_{\beta}+\mathbf{y}^{\top} \mathbf{V}_{y}^{-1} \mathbf{y}-\mathbf{m}^{\top} \mathbf{M m}\right) \\
& \mathbf{m}=\mathbf{V}_{\beta}^{-1} \boldsymbol{\mu}_{\beta}+\mathbf{X}^{\top} \mathbf{V}_{y}^{-1} \mathbf{y} ; \quad \mathbf{M}^{-1}=\mathbf{V}_{\beta}^{-1}+\mathbf{X}^{\top} \mathbf{V}_{y}^{-1} \mathbf{X}
\end{aligned}
$$

- Exact posterior sampling from $p\left(\beta, \sigma^{2} \mid \mathbf{y}\right)$ will automatically yield samples from $p(\boldsymbol{\beta} \mid \mathbf{y})$ and $p\left(\sigma^{2} \mid \mathbf{y}\right)$.
- For each $j=1,2, \ldots, N$ do the following:

1. $\operatorname{Draw} \sigma_{(j)}^{2} \sim I G\left(a^{*}, b^{*}\right)$
2. Draw $\beta_{(j)} \sim N\left(\mathbf{M m}, \sigma_{(j)}^{2} \mathbf{M}\right)$

- The above is sometimes referred to as composition sampling.

Exact sampling from joint posterior distributions

- Suppose we wish to draw samples from a joint posterior:

$$
p\left(\theta_{1}, \theta_{2} \mid \mathbf{y}\right)=p\left(\theta_{1} \mid \mathbf{y}\right) \times p\left(\theta_{2} \mid \theta_{1}, \mathbf{y}\right)
$$

- In conjugate models, it is often easy to draw samples from $p\left(\theta_{1} \mid \mathbf{y}\right)$ and from $p\left(\theta_{2} \mid \theta_{1}, \mathbf{y}\right)$.
- We can draw N samples from $p\left(\theta_{1}, \theta_{2} \mid \mathbf{y}\right)$ as follows.
- For each $j=1,2, \ldots, N$ do the following:

1. Draw $\theta_{1(j)} \sim p\left(\theta_{1} \mid \mathbf{y}\right)$
2. Draw $\theta_{2(j)} \sim p\left(\theta_{2} \mid \theta_{1(j)}, \mathbf{y}\right)$

- Remarkably, the $\theta_{2(j)}$'s drawn above have marginal distribution $p\left(\theta_{2} \mid \mathbf{y}\right)$ (see, Gelfand and Smith 1990).
- "Automatic Marginalization" we draw samples $p\left(\theta_{1}, \theta_{2} \mid \mathbf{y}\right)$ and automatically get samples from $p\left(\theta_{1} \mid \mathbf{y}\right)$ and $p\left(\theta_{2} \mid \mathbf{y}\right)$.

Bayesian predictions from linear regression

- Let $\tilde{\mathbf{y}}$ denote an $m \times 1$ vector of outcomes we seek to predict based upon predictors $\tilde{\mathbf{X}}$.
- We seek the posterior predictive density:

$$
p(\tilde{\mathbf{y}} \mid \mathbf{y})=\int p(\tilde{\mathbf{y}} \mid \boldsymbol{\theta}, \mathbf{y}) p(\boldsymbol{\theta} \mid \mathbf{y}) \mathrm{d} \boldsymbol{\theta}
$$

- Posterior predictive inference: sample from $p(\tilde{\mathbf{y}} \mid \mathbf{y})$.
- For each $j=1,2, \ldots, N$ do the following:

1. Draw $\boldsymbol{\theta}_{(j)} \sim p(\boldsymbol{\theta} \mid \mathbf{y})$
2. $\operatorname{Draw} \tilde{\mathbf{y}}_{(j)} \sim p\left(\tilde{\mathbf{y}} \mid \boldsymbol{\theta}_{(j)}, \mathbf{y}\right)$

Bayesian predictions from linear regression (cont'd)

- For legitimate probabilistic predictions (forecasting), the conditional distribution $p(\tilde{\mathbf{y}} \mid \boldsymbol{\theta}, \mathbf{y})$ must be well-defined.
- For example, consider the case with $\mathbf{V}_{y}=\mathbf{I}_{n}$. Specify the linear model:

$$
\left[\begin{array}{l}
\mathbf{y} \\
\tilde{\mathbf{y}}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{X} \\
\tilde{\mathbf{X}}
\end{array}\right] \boldsymbol{\beta}+\left[\begin{array}{l}
\boldsymbol{\epsilon} \\
\tilde{\boldsymbol{\epsilon}}
\end{array}\right] ;\left[\begin{array}{l}
\boldsymbol{\epsilon} \\
\tilde{\boldsymbol{\epsilon}}
\end{array}\right] \sim N\left(\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{0}
\end{array}\right], \sigma^{2}\left[\begin{array}{cc}
\mathbf{I}_{n} & O \\
O & \mathbf{I}_{m}
\end{array}\right]\right)
$$

- Easy to derive the conditional density:

$$
p(\tilde{\mathbf{y}} \mid \boldsymbol{\theta}, \mathbf{y})=p(\tilde{\mathbf{y}} \mid \boldsymbol{\theta})=N\left(\tilde{\mathbf{y}} \mid \tilde{\mathbf{X}} \beta, \sigma^{2} \mathbf{I}_{m}\right)
$$

- Posterior predictive density:

$$
p(\tilde{\mathbf{y}} \mid \mathbf{y})=\int N\left(\tilde{\mathbf{y}} \mid \tilde{\mathbf{X}} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{m}\right) p\left(\boldsymbol{\beta}, \sigma^{2} \mid \mathbf{y}\right) \mathrm{d} \boldsymbol{\beta} \mathrm{~d} \sigma^{2} .
$$

- For each $j=1,2, \ldots, N$ do the following:

1. $\operatorname{Draw}\left\{\boldsymbol{\beta}_{(j)}, \sigma_{(j)}^{2}\right\} \sim p\left(\boldsymbol{\beta}, \sigma^{2} \mid \mathbf{y}\right)$
2. $\operatorname{Draw} \tilde{\mathbf{y}}_{(j)} \sim N\left(\tilde{\mathbf{X}}_{(j)}, \sigma_{(j)}^{2} \mathbf{I}_{m}\right)$

Bayesian predictions from general linear regression

- For example, consider the case with general \mathbf{V}_{y}. Specify:

$$
\left[\begin{array}{l}
\mathbf{y} \\
\tilde{\mathbf{y}}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{X} \\
\tilde{\mathbf{X}}
\end{array}\right] \beta+\left[\begin{array}{c}
\boldsymbol{\epsilon} \\
\tilde{\epsilon}
\end{array}\right] ; \quad\left[\begin{array}{l}
\boldsymbol{\epsilon} \\
\tilde{\epsilon}
\end{array}\right] \sim N\left(\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{0}
\end{array}\right], \sigma^{2}\left[\begin{array}{cc}
\mathbf{V}_{y} & \mathbf{V}_{y \tilde{y}} \\
\mathbf{V}_{y \tilde{y}}^{\top} & \mathbf{V}_{\tilde{y}}
\end{array}\right]\right) .
$$

- Derive the conditional density

$$
\begin{aligned}
& p(\tilde{\mathbf{y}} \mid \boldsymbol{\theta}, \mathbf{y})=N\left(\tilde{\mathbf{y}} \mid \boldsymbol{\mu}_{\tilde{y} \mid y}, \sigma^{2} \mathbf{V}_{\tilde{y} \mid y}\right): \\
& \boldsymbol{\mu}_{\tilde{y} \mid y}=\tilde{\mathbf{X}} \beta+\mathbf{V}_{y \tilde{y}}^{\top} \mathbf{V}_{y}^{-1}(\mathbf{y}-\mathbf{X} \beta) ; \quad \mathbf{V}_{\tilde{y} \mid y}=\mathbf{V}_{\tilde{y}}-\mathbf{V}_{y \tilde{y}}^{\top} \mathbf{V}_{y}^{-1} \mathbf{V}_{y \tilde{y}} .
\end{aligned}
$$

- Posterior predictive density:

$$
p(\tilde{\mathbf{y}} \mid \mathbf{y})=\int N\left(\tilde{\mathbf{y}} \mid \boldsymbol{\mu}_{\tilde{y} \mid y}, \sigma^{2} \mathbf{V}_{\tilde{y} \mid y}\right) p\left(\boldsymbol{\beta}, \sigma^{2} \mid \mathbf{y}\right) \mathrm{d} \beta \mathrm{~d} \sigma^{2} .
$$

- For each $j=1,2, \ldots, N$ do the following:

1. $\operatorname{Draw}\left\{\boldsymbol{\beta}_{(j)}, \sigma_{(j)}^{2}\right\} \sim p\left(\boldsymbol{\beta}, \sigma^{2} \mid \mathbf{y}\right)$
2. Compute $\boldsymbol{\mu}_{\tilde{y} \mid y}$ using $\boldsymbol{\beta}_{(j)}$ and $\operatorname{draw} \tilde{\mathbf{y}}_{(j)} \sim N\left(\boldsymbol{\mu}_{\tilde{y} \mid y}, \sigma_{(j)}^{2} \mathbf{V}_{\tilde{y}}\right)$

Application to Bayesian Geostatistics

- Consider the spatial regression model

$$
y\left(s_{i}\right)=\mathbf{x}^{\top}\left(\mathbf{s}_{i}\right) \boldsymbol{\beta}+w\left(\mathbf{s}_{i}\right)+\epsilon\left(\mathbf{s}_{i}\right)
$$

where $w\left(\mathbf{s}_{i}\right)$'s are spatial random effects and $\epsilon\left(\mathbf{s}_{i}\right)$'s are unstructured errors ("white noise").

- $\mathbf{w}=\left(w\left(\mathbf{s}_{1}\right), w\left(\mathbf{s}_{2}\right), \ldots, w\left(\mathbf{s}_{n}\right)\right)^{\top} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{R}(\phi)\right)$
- $\boldsymbol{\epsilon}=\left(\epsilon\left(\mathbf{s}_{1}\right), \epsilon\left(\mathbf{s}_{2}\right), \ldots, \epsilon\left(\mathbf{s}_{n}\right)\right)^{\top} \sim N\left(\mathbf{0}, \tau^{2} \mathbf{I}_{n}\right)$
- Integrating out random effects leads to a Bayesian model:

$$
I G\left(\sigma^{2} \mid a, b\right) \times N\left(\beta \mid \boldsymbol{\mu}_{\beta}, \sigma^{2} \mathbf{V}_{\beta}\right) \times N\left(\mathbf{y} \mid \mathbf{X} \beta, \sigma^{2} \mathbf{V}_{y}\right)
$$

where $\mathbf{V}_{y}=\mathbf{R}(\phi)+\alpha \mathbf{I}_{n}$ and $\alpha=\tau^{2} / \sigma^{2}$.

- Fixing ϕ and α (e.g., from variogram or other EDA) yields a conjugate Bayesian model (see bayesGeostatExact() in spBayes package).
- Exact posterior sampling is easily achieved as before!

Inference on spatial random effects

- Rewrite the model in terms of \mathbf{w} as:

$$
\begin{aligned}
I G\left(\sigma^{2} \mid a, b\right) \times & N\left(\beta \mid \boldsymbol{\mu}_{\beta}, \sigma^{2} \mathbf{V}_{\beta}\right) \times N\left(\mathbf{w} \mid \mathbf{0}, \sigma^{2} \mathbf{R}(\phi)\right) \\
& \times N\left(\mathbf{y} \mid \mathbf{X} \boldsymbol{\beta}+\mathbf{w}, \tau^{2} \mathbf{I}_{n}\right)
\end{aligned}
$$

- Posterior distribution of spatial random effects w:

$$
p(\mathbf{w} \mid \mathbf{y})=\int N\left(\mathbf{w} \mid \mathbf{M m}, \sigma^{2} \mathbf{M}\right) \times p\left(\boldsymbol{\beta}, \sigma^{2} \mid \mathbf{y}\right) \mathrm{d} \boldsymbol{\beta} \mathrm{~d} \sigma^{2}
$$

where $\mathbf{m}=(1 / \alpha)(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})$ and $\mathbf{M}^{-1}=\mathbf{R}^{-1}(\phi)+(1 / \alpha) \mathbf{I}_{n}$.

- For each $j=1,2, \ldots, N$ do the following:

1. $\operatorname{Draw}\left\{\boldsymbol{\beta}_{(j)}, \sigma_{(j)}^{2}\right\} \sim p\left(\boldsymbol{\beta}, \sigma^{2} \mid \boldsymbol{y}\right)$
2. Compute \mathbf{m} from $\boldsymbol{\beta}_{(j)}$ and draw $\mathbf{w}_{(j)} \sim N\left(\mathbf{M m}, \sigma_{(j)}^{2} \mathbf{M}\right)$

Inference on the process

- Posterior distribution of $w\left(\mathbf{s}_{0}\right)$ at new location \mathbf{s}_{0} :

$$
p\left(w\left(\mathbf{s}_{0}\right) \mid \mathbf{y}\right)=\int N\left(w\left(\mathbf{s}_{0}\right) \mid \mu_{w\left(\mathbf{s}_{0}\right) \mid w}, \sigma_{w\left(\mathbf{s}_{0}\right) \mid w}^{2}\right) \times p\left(\sigma^{2}, \mathbf{w} \mid \mathbf{y}\right) \mathrm{d} \sigma^{2} \mathrm{~d} \mathbf{w}
$$

where

$$
\begin{aligned}
\mu_{w\left(\mathbf{s}_{0}\right) \mid w} & =\mathbf{r}^{\top}\left(\mathbf{s}_{0} ; \phi\right) \mathbf{R}^{-1}(\phi) \mathbf{w} \\
\sigma_{w\left(\mathbf{s}_{0}\right) \mid w}^{2} & =\sigma^{2}\left\{1-\mathbf{r}^{\top}\left(\mathbf{s}_{0} ; \phi\right) \mathbf{R}^{-1}(\phi) \mathbf{r}\left(\mathbf{s}_{0}, \phi\right)\right\}
\end{aligned}
$$

- For each $j=1,2, \ldots, N$ do the following:

1. Compute $\mu_{w\left(s_{0}\right) \mid w}$ and $\sigma_{w\left(\mathbf{s}_{0}\right) \mid w}^{2}$ from $\mathbf{w}_{(j)}$ and $\sigma_{(j)}^{2}$.
2. $\operatorname{Draw} w_{(j)}\left(\mathbf{s}_{0}\right) \sim N\left(\mu_{w\left(\mathbf{s}_{0}\right) \mid w}, \sigma_{w\left(\mathbf{s}_{0}\right) \mid w}^{2}\right)$.

Bayesian "kriging" or prediction

- Posterior predictive distribution at new location \mathbf{s}_{0} is $p\left(y\left(\mathbf{s}_{0}\right) \mid \mathbf{y}\right)$:

$$
\int N\left(y\left(\mathbf{s}_{0}\right) \mid \mathbf{x}^{\top}\left(s_{0}\right) \boldsymbol{\beta}+w\left(\mathbf{s}_{0}\right), \alpha \sigma^{2}\right) \times p\left(\boldsymbol{\beta}, \sigma^{2}, \mathbf{w} \mid \mathbf{y}\right) \mathrm{d} \beta \mathrm{~d} \sigma^{2} \mathrm{~d} \mathbf{w}
$$

- For each $j=1,2, \ldots, N$ do the following:

1. $\operatorname{Draw} y_{(j)}\left(\mathbf{s}_{0}\right) \sim N\left(\mathbf{x}^{\top}\left(\mathbf{s}_{0}\right) \boldsymbol{\beta}_{(j)}+w_{(j)}\left(s_{0}\right), \alpha \sigma_{(j)}^{2}\right)$.

Non-conjugate models: The Gibbs Sampler

- Let $\theta=\left(\theta_{1}, \ldots, \theta_{p}\right)$ be the parameters in our model.
- Initialize with starting values $\theta^{(0)}=\left(\theta_{1}^{(0)}, \ldots, \theta_{\rho}^{(0)}\right)$
- For $j=1, \ldots, N$, update successively using the full conditional distributions:

$$
\begin{aligned}
\theta_{1}^{(j)} & \sim p\left(\theta_{1}^{(j)} \mid \theta_{2}^{(j-1)}, \ldots, \theta_{P}^{(j-1)}, \mathbf{y}\right) \\
\theta_{2}^{(j)} & \sim p\left(\theta_{2} \mid \theta_{1}^{(j)}, \theta_{3}^{(j-1)}, \ldots, \theta_{p}^{(j-1)}, \mathbf{y}\right)
\end{aligned}
$$

(the generic $k^{\text {th }}$ element)

$$
\theta_{k}^{(j)} \sim p\left(\theta_{k} \mid \theta_{1}^{(j)}, \ldots, \theta_{k-1}^{(j)}, \theta_{k+1}^{(j-1)}, \ldots, \theta_{p}^{(j-1)}, \mathbf{y}\right)
$$

$$
\theta_{p}^{(j)} \sim p\left(\theta_{p} \mid \theta_{1}^{(j)}, \ldots, \theta_{p-1}^{(j)}, \mathbf{y}\right)
$$

- In principle, the Gibbs sampler will work for extremely complex hierarchical models. The only issue is sampling from the full conditionals. They may not be amenable to easy sampling - when these are not in closed form. A more general and extremely powerful - and often easier to code - algorithm is the Metropolis-Hastings (MH) algorithm.
- This algorithm also constructs a Markov chain, but does not necessarily care about full conditionals.
- Popular approach: Embed Metropolis steps within Gibbs to draw from full conditionals that are not accessible to directly generate from.

When we don't want to fix ϕ and $\alpha=\tau^{2} / \sigma^{2}$

Latent Bayesian Model

$$
\begin{aligned}
& N\left(\mathbf{y} \mid \mathbf{X} \beta+\mathbf{w}, \tau^{2} \mathbf{I}\right) \times N\left(\mathbf{w} \mid 0, \sigma^{2} \mathbf{R}(\phi)\right) \times N\left(\boldsymbol{\beta} \mid \boldsymbol{\mu}_{\beta}, \mathbf{V}_{\beta}\right) \\
& \quad \times \operatorname{IG}\left(\tau^{2} \mid a_{\tau}, b_{\tau}\right) \times \operatorname{IG}\left(\sigma^{2} \mid a_{\sigma}, b_{\sigma}\right) \times \operatorname{Unif}\left(\phi \mid a_{\phi}, b_{\phi}\right)
\end{aligned}
$$

Sampler:

- Full conditionals for $\beta, \tau^{2}, \sigma^{2}$ and $w\left(\mathbf{s}_{i}\right)$'s
- Metropolis step for updating ϕ
- Pros: Full conditional distributions for all parameters except ϕ, easy to code up
- Cons: High-dimensional parameter space can mean slow convergence

When we don't want to fix ϕ and $\alpha=\tau^{2} / \sigma^{2}$ (cont'd)

Collapsed Bayesian Model

$$
\begin{aligned}
& N\left(\mathbf{y}\left|\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{R}(\phi)+\tau^{2}\right|\right) \times N\left(\boldsymbol{\beta} \mid \boldsymbol{\mu}_{\beta}, \mathbf{V}_{\beta}\right) \\
& \quad \times \operatorname{IG}\left(\tau^{2} \mid a_{\tau}, b_{\tau}\right) \times \operatorname{IG}\left(\sigma^{2} \mid a_{\sigma}, b_{\sigma}\right) \times \operatorname{Unif}\left(\phi \mid a_{\phi}, b_{\phi}\right)
\end{aligned}
$$

Sampler:

- Full conditional for β
- Metropolis step for updating $\tau^{2}, \sigma^{2}, \phi$
- Pros: Low-dimensional parameter space
- "Recover" $w\left(\mathbf{s}_{i}\right)$'s in a posterior predictive fashion

We can also integrate out β ! See Finley et al. (2015) for details https://www.jstatsoft.org/article/view/v063i13 and implementation in the spBayes package.

The Metropolis-Hastings Algorithm

- The Metropolis-Hastings algorithm: Start with a initial value for $\theta=\theta^{(0)}$. Select a candidate or proposal distribution from which to propose a value of θ at the j-th iteration: $\theta^{(j)} \sim q\left(\theta^{(j-1)}, \nu\right)$. For example, $q\left(\theta^{(j-1)}, \nu\right)=N\left(\theta^{(j-1)}, \nu\right)$ with ν fixed.
- Compute

$$
r=\frac{p\left(\theta^{*} \mid y\right) q\left(\theta^{(j-1)} \mid \theta^{*}, \nu\right)}{p\left(\theta^{(j-1)} \mid y\right) q\left(\theta^{*} \mid \theta^{(j-1)} \nu\right)}
$$

- If $r \geq 1$ then set $\theta^{(j)}=\theta^{*}$. If $r \leq 1$ then draw $U \sim(0,1)$. If $U \leq r$ then $\theta^{(j)}=\theta^{*}$. Otherwise, $\theta^{(j)}=\theta^{(j-1)}$.
- Repeat for $j=1, \ldots N$. This yields $\theta^{(1)}, \ldots, \theta^{(N)}$, which, after a burn-in period, will be samples from the true posterior distribution. It is important to monitor the acceptance ratio r of the sampler through the iterations. Rough recommendations: for vector updates $r \approx 20 \%$., for scalar updates $r \approx 40 \%$. This can be controlled by "tuning" ν.
- Popular approach: Embed Metropolis steps within Gibbs to draw from full conditionals that are not accessible to directly generate from.
- Example: For the linear model, our parameters are $\left(\beta, \sigma^{2}\right)$. We write $\theta=\left(\beta, \log \left(\sigma^{2}\right)\right)$ and, at the j-th iteration, propose $\theta^{*} \sim N\left(\theta^{(j-1)}, \Sigma\right)$. The log transformation on σ^{2} ensures that all components of θ have support on the entire real line and can have meaningful proposed values from the multivariate normal. But we need to transform our prior to $p\left(\beta, \log \left(\sigma^{2}\right)\right)$.
- Let $z=\log \left(\sigma^{2}\right)$ and assume $p(\beta, z)=p(\beta) p(z)$. Let us derive $p(z)$.

REMEMBER: we need to adjust for the jacobian. Then $p(z)=p\left(\sigma^{2}\right)\left|d \sigma^{2} / d z\right|=p\left(e^{z}\right) e^{z}$. The jacobian here is $e^{z}=\sigma^{2}$.

- Let $p(\beta)=1$ and an $p\left(\sigma^{2}\right)=I G\left(\sigma^{2} \mid a, b\right)$. Then log-posterior is:

$$
-(a+n / 2+1) z+z-\frac{1}{e^{z}}\left\{b+\frac{1}{2}(Y-X \beta)^{T}(Y-X \beta)\right\} .
$$

- A symmetric proposal distribution, say $q\left(\theta^{*} \mid \theta^{(j-1)}, \Sigma\right)=N\left(\theta^{(j-1)}, \Sigma\right)$, cancels out in r. In practice it is better to compute $\log (r)$: $\log (r)=\log \left(p\left(\theta^{*} \mid y\right)-\log \left(p\left(\theta^{(j-1)} \mid y\right)\right)\right.$. For the proposal, $N\left(\theta^{(j-1)}, \Sigma\right), \Sigma$ is a $d \times d$ variance-covariance matrix, and $d=\operatorname{dim}(\theta)=p+1$.
- If $\log r \geq 0$ then set $\theta^{(j)}=\theta^{*}$. If $\log r \leq 0$ then draw $U \sim(0,1)$. If $U \leq r$ (or $\log U \leq \log r$) then $\theta^{(j)}=\theta^{*}$. Otherwise, $\theta^{(j)}=\theta^{(j-1)}$.
- Repeat the above procedure for $j=1, \ldots N$ to obtain samples $\theta^{(1)}, \ldots, \theta^{(N)}$.

