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Linear Regression

Linear regression is, perhaps, the most widely used statistical

modeling tool.

It addresses the following question: How does a quantity of
primary interest, y, vary as (depend upon) another quantity,

or set of quantities, x?

The quantity y is called the response or outcome variable.
Some people simply refer to it as the dependent variable.

The variable(s) x are called explanatory variables, covariates
or simply independent variables.

In general, we are interested in the conditional distribution of
y, given x, parametrized as p(y | 6, x). 1



Typically, we have a set of units or experimental subjects
i=1,2,...,n.

For each of these units we have measured an outcome y; and
a set of explanatory variables x,T = (1, X1, X2, - - - , Xip)-

The first element of x,T is often taken as 1 to signify the
presence of an “intercept.”

We collect the outcome and explanatory variables into an
n x 1 vector and an n x (p + 1) matrix:

T
Y1 1 X11 X12 ... Xip X1

T
Y2 1 X21 X222 ... X2p Xo

y=1|.|: X={. . . . |=

Vn 1 Xp1 Xp2 ... Xpp X



= The linear model is the most fundamental of all serious
statistical models underpinning:

= ANOVA: y; is continuous, x;'s are all categorical
= REGRESSION: y; is continuous, xj;'s are continuous

= ANCOVA: y; is continuous, x;'s are continuous for some j and
categorical for others.



Conjugate Bayesian Linear Regression

= A conjugate Bayesian linear model is given by:
vil B, 0%, x i N(pi,o?); i=1,2,...,n;
i = Bo+ Bixin+ -+ Bpxip =% B B =(BosB1s--,8p) ;
Blo® ~ N(pg,0°Vg); o ~1G(a,b).

= Unknown parameters include the regression parameters and
the variance, i.e. 8 = {B,0°}.

= We assume X is observed without error and all inference is
conditional on X.

= The above model is often written in terms of the posterior
density p(8 |y) o p(6.y):

16(0 | 2, b) x N(B | 115,0°V5) x [[ Nyi |x] B, 02).
=il



Conjugate Bayesian (General) Linear Regression

= A more general conjugate Bayesian linear model is given by:
y|B,0% X ~ N(XB,a°V,)
Blo® ~ N(p‘ﬂvgzvﬁ) ;
02 ~ 1G(a, b) .

» V), Vg and pg are assumed fixed.

= Unknown parameters include the regression parameters and
the variance, i.e. 8 = {3,0°}.

= We assume X is observed without error and all inference is
conditional on X.

= The posterior density p(6|y) x p(0,y):
IG(a? | a, b) x N(B|pg,0°V3) x N(y| XB,0°V,)

= The model on the previous slide is a special case with V, =1,
(n x n identity matrix). 5



Conjugate Bayesian (General) Linear Regression

= The joint posterior density can be written as
. IG(o?|a*,b") x N (B|Mm,o*M)
p(B,0°y) o VRN - :
p(o”|y) p(Blo,y)

where

a*=a+ g , b"=b+ % (ugv/;mﬁ —i—yTV;ly - mTMm) ;
m=V;lu; + X"V ly; M=Vl XTV)IX,
= Exact posterior sampling from p(83, 2 |y) will automatically
yield samples from p(8|y) and p(c?|y).
= Foreachj=1,2,..., N do the following:
1. Draw o(; ~ IG(a*, b*)
2. Draw ) ~ N (Mm, o) M)

= The above is sometimes referred to as composition sampling.



Exact sampling from joint posterior distributions

= Suppose we wish to draw samples from a joint posterior:

p(61,621y) = p(61]y) x p(02]01,y) .
= In conjugate models, it is often easy to draw samples from
p(61]y) and from p(f2 |61, y).
= We can draw N samples from p(61, 6, |y) as follows.

= Foreachj=1,2,..., N do the following:
1. Draw 6y ~ p(61]y)
2. Draw Oy ~ p(62 | 01(j), y)

» Remarkably, the 6,(;)'s drawn above have marginal
distribution p(62 |y) (see, Gelfand and Smith 1990).

= “Automatic Marginalization” we draw samples p(61, 02 |y)
and automatically get samples from p(61 |y) and p(62 |y).



Bayesian predictions from linear regression

= Let ¥ denote an m x 1 vector of outcomes we seek to predict
based upon predictors X.

= We seek the posterior predictive density:

p(51y) = [ p(516.y)p(03)d0

= Posterior predictive inference: sample from p(y|y).

= Foreachj=1,2,...,N do the following:
1. Draw 8y ~ p(@y)

2. Draw §(;y ~ p(¥16(),y)



Bayesian predictions from linear regression (cont’d)

= For legitimate probabilistic predictions (forecasting), the
conditional distribution p(y|6,y) must be well-defined.

= For example, consider the case with V, = I,. Specify the
linear model:

¥:)~( ;f~N0,02InO.
y X 3 0 o I,
= Easy to derive the conditional density:
p(§10.y) = p(310) = N(F| XB, 0*Im)
= Posterior predictive density:
p(31Y) = [ NIRB.0%m)p(8 0% y)dBdo?.

= Foreach j=1,2,..., N do the following:
1. Draw {ﬂ(])70(2_,)} ~ p(ﬂaaz ‘y)

2. Draw §;y ~ N(XB), o) lm) 9

B+

€
€



Bayesian predictions from general linear regression

= For example, consider the case with general V,,. Specify:

y:)f .GNNOOJVyVyf/.
yoo|X e 0" |Vy; Vy
= Derive the conditional density
p(y|6,y) =N (9 | 151y UzVﬂy):

T 1
Hyly = Xﬁ + Vyyvy (y XB): Vj yly — =Vy — Vyyvy Vyy-

B+

= Posterior predictive density:

p1Y) = [ N (31n5,:02V5y) p(B.0% | y)dBdo?.
= Foreachj=1,2,..., N do the following:
1. Draw {3(1-)»0(2])} ~ p(B;0°y)

2. Compute py, using B(; and draw §;) ~ N(uﬂy,afj)Vy) "



Application to Bayesian Geostatistics

= Consider the spatial regression model
y(si) = x"(s)B + w(si) + e(si),

where w(s;)'s are spatial random effects and ¢(s;)’s are
unstructured errors (“white noise”).

= w= (w(s),w(s2),...,w(sn))" ~ N(0,0°R(¢))

= €= (€(s1),€(s2),...,€(sn)" ~ N(O,721,)

= Integrating out random effects leads to a Bayesian model:

IG(0?|a,b) x N(B|pg,o°Vs) x N(y|XB,0°V,)

where V, = R(¢) + al, and a = 72 /02.

» Fixing ¢ and « (e.g., from variogram or other EDA) yields a
conjugate Bayesian model (see bayesGeostatExact () in
spBayes package).

11
= Exact posterior sampling is easily achieved as before!



Inference on spatial random effects

= Rewrite the model in terms of w as:
IG(0® | a,b)xN(B | pr3,0°V) x N(w|0,5°R(¢))
x N(y| X8 +w, 721,).
= Posterior distribution of spatial random effects w:
plwly) = [ N(w|Mm,o?M) x p(8,0% | y)dfido?
where m = (1/a)(y — XB) and M~! = R7Y() + (1/a)l,.

= Foreachj=1,2,..., N do the following:
1. Draw {ﬂ(j)7a(2])} ~ p(B,5°|y)

2. Compute m from ;) and draw wg; ~ N(Mm,a(zj)M)

12



Inference on the process

= Posterior distribution of w(sp) at new location sp:
p((50) [¥) = [ NOW(50) |t 7 s ) <02 W | y)dor P

where

Lw(so)w =¥ (s0; )R (B)w ;
Toso)w = {1 — ' (s0: ))R™(d)r(s0, )}

= Foreach j=1,2,..., N do the following:

1. Compute fiy(sy)|w and UEV(SO)‘W from w(;) and 06).

2. Draw W(j)(SO) Y N(MW(SO)lw’UEV(So)lw)'

13



Bayesian “kriging” or prediction

= Posterior predictive distribution at new location sg is
p(y(so)|y):

| N(v(s0) [ (0)B-+ wiso). a0®) x p(B. 0%, w]| y)dBdo*dw

= Foreachj=1,2,..., N do the following:
1. Draw y(j)(so) ~ N(xT(so)ﬂU) S8 W(j)(so),ozaa-)).

14



Non-conjugate models: The Gibbs Sampler

= Let § =(01,...,6,) be the parameters in our model.
» Initialize with starting values 9© = (6{%, . ()

= For j=1,..., N, update successively using the full conditional

distributions:
o7 ~ p(67) |65 7....00V.y)
09 ~ p(62 169,657V, .00, y)

(the generic k' element)

. : 7 i—1 j—1
609 ~ p(6il6Y, .. ~79§£1791(<J+1)7 67

09 ~ p(6,16Y,...,69 .y)

ii5)



= In principle, the Gibbs sampler will work for extremely
complex hierarchical models. The only issue is sampling from
the full conditionals. They may not be amenable to easy
sampling — when these are not in closed form. A more general
and extremely powerful - and often easier to code - algorithm
is the Metropolis-Hastings (MH) algorithm.

= This algorithm also constructs a Markov chain, but does not

necessarily care about full conditionals.

= Popular approach: Embed Metropolis steps within Gibbs to
draw from full conditionals that are not accessible to directly

generate from.

16



When we don’t want to fix ¢ and o = 72/0?

Latent Bayesian Model

N(y| X8 +w,721) x N(w |0,0°R(¢)) x N(B | pg, V)
x IG(72 | ar, by) x 1G(0? | ay, by) x Unif(¢| ag, by)

Sampler:

= Full conditionals for 3, 72, 02 and w(s;)'s
= Metropolis step for updating ¢

= Pros: Full conditional distributions for all parameters except
¢, easy to code up

= Cons: High-dimensional parameter space can mean slow

convergence

17



When we don’t want to fix ¢ and o = 72/02 (cont’d)

Collapsed Bayesian Model

N(y| XB,°R(¢) + 7°1) x N(B| pg, Vp)
x IG(72 | ar, by) x 1G(0? | ag, by) x Unif(¢| ag, bs)

Sampler:

= Full conditional for 8

= Metropolis step for updating 72, 02, ¢

= Pros: Low-dimensional parameter space

= “Recover” w(s;)'s in a posterior predictive fashion

We can also integrate out 3! See Finley et al. (2015) for details
https://www.jstatsoft.org/article/view/v063i13 and

implementation in the spBayes package. "


https://www.jstatsoft.org/article/view/v063i13

The Metropolis-Hastings Algorithm

= The Metropolis-Hastings algorithm: Start with a initial value for § = 6.
Select a candidate or proposal distribution from which to propose a value
of 6 at the j-th iteration: 89 ~ q(GUfl), v). For example,
q(0Uu=1 v) = N(OU=V, v) with v fixed.

= Compute

. P07 1Y)q(0uV 16", v)
p(0G=1 [ y)q(6* |6U-1v)

= If r > 1 then set 0¥) = 0*. If r < 1 then draw U ~ (0,1). If U < r then
0% = 0*. Otherwise, 0¥) = 9U—1),

= Repeat for j = 1,...N. This yields 80, ..., 6™ which, after a burn-in
period, will be samples from the true posterior distribution. It is

important to monitor the acceptance ratio r of the sampler through the
iterations. Rough recommendations: for vector updates r =~ 20%., for
scalar updates r &~ 40%. This can be controlled by “tuning” v.

= Popular approach: Embed Metropolis steps within Gibbs to draw from
full conditionals that are not accessible to directly generate from.
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Example: For the linear model, our parameters are ([3,02). We write
6 = (B, log(c?)) and, at the j-th iteration, propose 6* ~ N(8U=1) ¥). The log

transformation on o2

ensures that all components of 6 have support on the
entire real line and can have meaningful proposed values from the multivariate
normal. But we need to transform our prior to p(8, log(c?)).

Let z = log(o?) and assume p(3,z) = p(B)p(z). Let us derive p(z).
REMEMBER: we need to adjust for the jacobian. Then

p(z) = p(0?)|do?/dz| = p(e?)e?. The jacobian here is €7 = 2.

Let p(8) =1 and an p(c?) = IG(c? | a, b). Then log-posterior is:

—(a+n/2+1)z+2z— eiz{bJr %(Y —XB)T(Y — XB)}.
A symmetric proposal distribution, say q(6*|0U~1,¥) = N(9U~1,¥), cancels
out in r. In practice it is better to compute log(r):
log(r) = log(p(6* | y) — log(p(0U—1) | y)). For the proposal, N(AU=1 ¥), ¥ is a
d x d variance-covariance matrix, and d = dim(0) = p + 1.
If log r > 0 then set OU) = 6*. If log r < 0 then draw U ~ (0,1). If U < r (or
log U < log r) then U) = 9*. Otherwise, 8U) = gl—1),
Repeat the above procedure for j =1,... N to obtain samples 9(1), AU o).
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